Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Corequisites: CH 117
General Chemistry Laboratory I (0-3-1)
(Lecture-Lab-Study Hours)
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Corequisites: CH 115
General Chemistry I (3-0-6)
(Lecture-Lab-Study Hours)
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
This is an introductory programming course using the Java language. The topics include: basic facts about object-oriented programming and Java through inheritance and exceptions; recursion; UML diagrams and how to read class diagrams; ethics in computer science; and some basic understanding about computer systems: the compile/link/interpret/execute cycle and data representation.
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Corequisites: MA 115
Calculus I (3-0-0)
(Lecture-Lab-Study Hours)
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants. Close
Techniques of integration, infinite series and Taylor series, polar coordinates, double integrals, improper integrals, parametric curves, arc length, functions of several variables, partial derivatives, gradients and directional derivatives.
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants. Close
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acid-base titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Corequisites: CH 116
General Chemistry II (3-0-6)
(Lecture-Lab-Study Hours)
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, prope
rties of the elements and nuclear chemistry. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
Biological principles and their physical and chemical aspects are explored at the cellular and molecular level. Major emphasis is placed on cell structure, the processes of energy conversion by plant and animal cells, genetics and evolution, and applications to biotechnology.
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves.
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations.
Techniques of integration, infinite series and Taylor series, polar coordinates, double integrals, improper integrals, parametric curves, arc length, functions of several variables, partial derivatives, gradients and directional derivatives. Close
This course provides the background necessary for advanced study of mathematics or computer science. Topics include propositional calculus, predicates and quantifiers, elementary set theory, countability, functions, relations, proof by induction, elementary combinatorics, elements of graph theory, mends, and elements of complexity theory.
An introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computer-interfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurem
ents, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves.
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Engineering curriculum requirement. Corequisites: MA 221
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
This is a course on standard data structures, including sorting and searching and using the Java language. The topics include: stages of software development; testing; UML diagrams; elementary data structures (lists, stacks, queues, and maps); use of elementary data structures in application frameworks; searching; sorting; and introduction to asymptotic complexity analysis. Corequisites: CS 135
Discrete Structures (3-0-6)
(Lecture-Lab-Study Hours)
The aim of this course is to integrate knowledge of basic mathematics with the problems involving specification, design, and computation. By the end of the course, the student should be able to: use sets, functions, lists, and relations in the specification and design of problems; use properties of arithmetic, modular arithmetic (sum, product, exponentiation), prime numbers, greatest common divisor, factoring, Fermat’s little theorem; use binary, decimal, and base-b notation systems and translation methods; use induction to design and verify recursive programs; and implement in Scheme all algorithms considered during the course. Close
This is an introductory programming course using the Java language. The topics include: basic fact
s about object-oriented programming and Java through inheritance and exceptions; recursion; UML diagrams and how to read class diagrams; ethics in computer science; and some basic understanding about computer systems: the compile/link/interpret/execute cycle and data representation. Close
An introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computer-interfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurements, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves.
An introduction to experimental measurements and data analysis. Students will learn how to use a variety of measurement techniques, including computer-interfaced experimentation, virtual instrumentation, and computational analysis and presentation. First semester experiments include basic mechanical and electrical measurements, motion and friction, RC circuits, the physical pendulum, and electric field mapping. Second semester experiments include the second order electrical system, geometrical and physical optics and traveling and standing waves.
This course introduces basic concepts of linear algebra from a geometric point of view. Topics include the method of Ga
ussian elimination to solve systems of linear equations; linear spaces and dimension; independent and dependent vectors; norms, inner product, and bases in vector spaces; determinants, eigenvalues and eigenvectors of matrices; symmetric, unitary, and normal matrices; matrix representations of linear transformations and orthogonal projections; the fundamental theorems of linear algebra; and the least-squares method and LU-decomposition.
This course begins with a brief introduction to writing programs in a higher level language, such as Matlab. Students are taught fundamental principles regarding machine representation of numbers, types of computational errors, and propagation of errors. The numerical methods include finding zeros of functions, solving systems of linear equations, interpolation and approximation of functions, numerical integration and differentiation, and solving initial value problems of ordinary differential equations. Corequisites: MA 221
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Techniques of integration, infinite series and Taylor series, polar coordinates, double integrals, improper integrals, parametric curves, arc length, functions of several variables, partial derivatives, gradients and directional derivatives. Close
This is a course on more complex data structures, and algorithm design and analysis, using the C language. Topics include: advanced and/or balanced search trees; hashing; further asymptotic complexity analysis; standard algorithm design techniques; graph algorithms; complex sort algorithms; and other "classic" algorithms that serve as examples of design techniques.
Getting acquainted with C++: data types, input and output, functions, writing simple C++ programs, flow control, Boolean expressions, d
ecision statements, if/then, and switch/case. Loop operations, while, do/while, and for loops. Arrays and pointers. Defining structs and classes, constructors and destructors, and operator overloading using an example String class. Templates. Abstract data types: vectors, lists, stacks, queues, and priority trees with applications. Trees and simple sorting with searching algorithms. By invitation only. Students who complete this class are exempt from CS 115 and CS 284. Close
This is a course on standard data structures, including sorting and searching and using the Java language. The topics include: stages of software development; testing; UML diagrams; elementary data structures (lists, stacks, queues, and maps); use of elementary data structures in application frameworks; searching; sorting; and introduction to asymptotic complexity analysis. Close
Introduces the essentials of probability theory and elementary statistics. Lectures and assignments greatly stress the manifold applications of probability and statistics to computer science, production management, quality control, and reliability. A statistical computer package is used throughout the course for teaching and for assignments. Contents include: descriptive statistics, pictorial and tabular methods, and measures of location and of variability; sample space and events, probability axioms, and counting techniques; conditional probability and independence, and Bayes' formula; discrete random variables, distribution functions and moments, and binomial and Poisson distributions; continuous random variables, densities and moment
s, normal, gamma, and exponential and Weibull distributions unions; distribution of the sum and average of random samples; the Central Limit Theorem; confidence intervals for the mean and the variance; hypothesis testing and p-values, and applications for the mean; simple linear regression, and estimation of and inference about the parameters; and correlation and prediction in a regression model.
Techniques of integration, infinite series and Taylor series, polar coordinates, double integrals, improper integrals, parametric curves, arc length, functions of several variables, partial derivatives, gradients and directional derivatives. Close
This course is primarily for students interested in using numerical methods to solve problems in mathematics, science, engineering, and management. Computational projects will be a significant part of this course and it is expected that students already have experience programming in at least one high level language. Standard topics include numerical solutions of ordinary and partial differential equations, techniques in numerical linear algebra, the Fast Fourier Transform, optimization methods, and an introduction to parallel programming. Additional topics will depend on the interests of the instructor and students.
Simple harmonic motion, oscillations and pendulums; Fourier analysis; wave properties; wave-particle dualism; the Schrödinger equation and its interpretation; wave functions; the Heisenberg uncertainty principle; quantum mechanical tunneling and application; quantum mechanics of a particle in a "box," the hydrogen atom; electronic spin; properties of many electron atoms; atomic spectra; principles of lasers and applications; electrons in solids; conductors and semiconductors; the n-p junction and the transistor; properties of atomic nuclei; radioactivity; fusion and fission. Spring Semester.
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close