Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Corequisites: CH 117
General Chemistry Laboratory I (0-3-1)
(Lecture-Lab-Study Hours)
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Corequisites: CH 115
General Chemistry I (3-0-6)
(Lecture-Lab-Study Hours)
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants.
This is a two-semester course that consists of a set of engineering experiences such as lectures, small group sessions, on-line modules a
nd visits. Students are required to complete a specified number of experiences each semester and are given credit at the end of the semester. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started on competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Corequisites: E 115
Introduction to Programming for Engineers (1-2-3)
(Lecture-Lab-Study Hours)
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I). Close
Engineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computer-aided design and manufacturing (CAD/CAM) using numerically-controlled (NC) machines.
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I).
This is a two-semester course that consists of a set of engineering experiences such as lectures, small group sessions, on-line modules and visits. Students are required to complete a specified number of experiences each semester and are given credit at the end of the semester. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis.
Techniques of integration, infinite series and Taylor series, polar coordinates, double integrals, improper integrals, parametric curves, arc length, functions of several variables, partial derivatives, gradients and directional derivatives.
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Corequisites: MA 115
Calculus I (3-0-0)
(Lecture-Lab-Study Hours)
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants. Close
This course continues the freshman year experience in design. The engineering method introduced in Engineering Design I is reinforced. Further introduction of professional practice topics are linked to their application and testing in case studies and project work.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started on competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations.
Techniques of integration, infinite series and Taylor series, polar coordinates, double integrals, improper integrals, parametric curves, arc length, functions of several variables, partial derivatives, gradients and directional derivatives. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves.
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, line
ar momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures.
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Corequisites: MA 221
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Corequisites: E 126
Mechanics of Solids
(4-0-8)
(Lecture-Lab-Study Hours)
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures. Close
This course continues the freshman year experience in design. The engineering method introduced in Engineering Design I is reinforced. Further introduction of professional practice topics are linked to their application and testing in case studies and project work. Close
Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Engineering curriculum requirement. Corequisites: MA 221
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed.
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close
Concepts of heat and work, First and Second Laws for closed and open systems including steady processes and cycles, thermodynamic properties of substances and interrelationships, phase change and phase equilibrium, chemical reactions and chemical equilibrium, representative applications.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Functions of one variable, limits, continuity, derivatives, chain rule, maxima and minima, exponential functions and logarithms, inverse functions, antiderivatives, elementary differential equations, Riemann sums, the Fundamental Theorem of Calculus, vectors and determinants. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
This course includes both experimentation and open-ended design problems that are integrated with the Materials Processing course taught concurrently. Core design themes are further developed. Corequisites: E 344
Materials Processing
(3-0-6)
(Lecture-Lab-Study Hours)
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products. Close
Development of deterministic and non-deterministic models for physical systems, engineering applications, simulation tools for deterministic and non-deterministic systems, case studies, and projects.
This course covers the basics of cost accounting and cost estimation for engineering projects. Basic engineering economics topics include mathematics of finance, time value of money and economic analyses using three worths, internal rate of return and benefit cost figures of merit. Advanced topics include after tax analysis, inflation, risk analysis and multi attribute analysis. Laboratory exercises include introduction to the use of spreadsheet and a series of labs that parallel the lecture portion of the course. The student is introduced to an economic model (Spreadsheet to Determine the Economics of Engineering of Design and Development - SEED), which is used to design and provide typical venture capital financials. These financials are income statement, balance sheet, break-even analysis and sensitivity analysis. Junior standing required.
This course allows each discipline to address design topics specific to their discipline. The latter part of this course is structured to allow for project selection, team formation, and preparation of a proposal suitable for submission to a potential sponsor for the senior design capstone project. Core design themes are further developed.
Descriptive statistics, pictorial and tabular methods, measures of location and of variability, sample space and events, probability and independence, Bayes' formula, discrete random variables, densities and moments, normal, gamma, exponential and Weibull distributions, distribution of the sum and average of random samples, the central limit theorem, confidence intervals for the mean and the variance, hypothesis testing and p-values, applications for prediction in a regression model. A statistical computer package is used throughout the course for teaching and for project assignments.
Techniques of integration, infinite series and Taylor series, polar coordinates, double integrals, improper integrals, parametric curves, arc length, functions of several variables, partial derivatives, gradients and directional derivatives. Close
Senior design course. The development of design skills and engineering judgment, based upon previous and current course and laboratory experience, is accomplished by participation in a design project. Projects are selected in areas of current interest such as communication and control systems, signal processing and hardware and software design for computer-based systems. To be taken during the student's last fall semester as an undergraduate student.