Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Corequisites: CH 117
General Chemistry Laboratory I (0-3-1)
(Lecture-Lab-Study Hours)
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Corequisites: CH 115,
General Chemistry I (3-0-6)
(Lecture-Lab-Study Hours)
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Corequisites: E 115,
Introduction to Programming (1-2-3)
(Lecture-Lab-Study Hours)
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I). Close
Engineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computer-aided design and manufacturing (CAD/CAM) using numerically-controlled (NC) machines. Close
Engineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computer-aided design and manufacturing (CAD/CAM) using numerically-controlled (NC) machines.
This is the first half of a one-credit, two-semester course that consists of a set of engineering experiences such as lectures, small group sessions, on-line modules and visits. Students are required to complete a specified number of experiences each semester and are given credit at the end of the second half of the course which is E102. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis. Course is pass/fail.
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I).
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout.
This course empowers students with the written and oral communications skills essential for both university-level academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations.
This course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view. Close
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acid-base titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Corequisites: CH 116
General Chemistry II (3-0-6)
(Lecture-Lab-Study Hours)
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
This is a two-semester course that consists of a set of engineering experiences such as lectures, small group sessions, on-line modules and visits. Students are required to complete a specified number of experiences each semester and are given credit at the end of the semester. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Corequisites: MA 115
Calculus I (4-0-8)
(Lecture-Lab-Study Hours)
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Close
This course introduces students to all the humanistic disciplines offered by the College of Arts and Letters: history, literature, philosophy, the social sciences, art, and music. By studying seminal works and engaging in discussions and debates regarding the themes and ideas presented in them, students learn how to examine evidence in formulating ideas, how to subject opinions, both their own, as well those of others, to rational evaluation, and in the end, how to appreciate and respect a wide diversity of opinions and points of view.
This course empowers students with the written and oral communications skills essential for both university-level academic discourse as well as success outside Stevens in the professional world. Tailored to the Stevens student, styles of writing and communications include technical writing, business proposals and reports, scientific reports, expository writing, promotional documents and advertising, PowerPoint presentations, and team presentations. The course covers the strategies for formulating effective arguments and conveying them to a wider audience. Special attention is given to the skills necessary for professional document structure, successful presentation techniques and grammatical/style considerations. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Corequisites: MA 221,
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Corequisites: E 126
Mechanics of Solids (4-0-8)
(Lecture-Lab-Study Hours)
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures. Close
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Corequisites: MA 221
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed.
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Close
An introduction to environmental engineering, including: environmental legislation; water chemistry including pH and alkalinity relationships, solubility and phase equilibria; environmental biology; fate and transport of contaminants in lakes, streams and groundwater; design and analysis of mechanical, physicochemical and biochemical treatment processes.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close
An introduction to environmental engineering through laboratory experiments, including: principles of laboratory methods, including common instrumental methods of analysis; application of experimental results to the design of environmental treatment processes.
Introduction to Environmental Engineering Systems (3-0-0)
(Lecture-Lab-Study Hours)
An introduction to environmental engineering, including: environmental legislation; water chemistry including pH and alkalinity relationships, solubility and phase equilibria; environmental biology; fate and transport of contaminants in lakes, streams and groundwater; design and analysis of mechanical, physicochemical and biochemical treatment processes.
Thermodynamic laws and functions with particular emphasis on systems of variable composition and chemically reacting systems. Chemical potential, fugacity and activity, excess function properties, standard states, phase and reaction equilibria, reaction coordinate, chemical-to-electrical energy conversion.
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I). Close
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Fluid properties: fluid statics, stability of floating bodies, conservation of mass, Euler and Bernoulli equations, impulse-momentum principle, laminar and turbulent flow, dimensional analysis and model testing, analysis of flow in pipes, open channel flow, hydrodynamic lift and drag. Practical civil engineering applications are stressed.
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures. Close
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
This course includes both experimentation and open-ended design problems that are integrated with the Materials Processing course taught concurrently. Core design themes are further developed. Corequisites: E 344
Materials Processing (3-0-6)
(Lecture-Lab-Study Hours)
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products. Close
An introduction to the most important processes employed by the chemical industries, such as plastics, pharmaceutical, chemical, petrochemical, and biochemical. The major emphasis is on formulating and solving material and energy balances for simple and complex systems. Equilibrium concepts for chemical process systems will be developed and applied. Computer courseware will be utilized extensively.
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I). Close
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Description of fundamental processes in natural and engineered systems, including intermedia transport of contaminants between environmental compartments (air, water, soil, and biota) and chemical and biochemical transformations within these compartments.
Introduction to Environmental Engineering Systems (3-0-0)
(Lecture-Lab-Study Hours)
An introduction to environmental engineering, including: environmental legislation; water chemistry including pH and alkalinity relationships, solubility and phase equilibria; environmental biology; fate and transport of contaminants in lakes, streams and groundwater; design and analysis of mechanical, physicochemical and biochemical treatment processes.
Incorporation of fundamental phenomena into mass balances to describe the fate and transport of contaminants in lakes, rivers, estuaries, groundwater, the atmosphere, and in pollution control processes. Several computer projects involving numerical solutions of models are required.
An introduction to the most important processes employed by the chemical industries, such as plastics, pharmaceutical, chemical, petrochemical, and biochemical. The major emphasis is on formulating and solving material and energy balances for simple and complex systems. Equilibrium concepts for chemical process systems will be developed and applied. Computer courseware will be utilized extensively. Close
Fate and Transport of Environmental Contaminants (3-0-0)
(Lecture-Lab-Study Hours)
Description of fundamental processes in natural and engineered systems, including intermedia transport of contaminants between environmental compartments (air, water, soil, and biota) and chemical and biochemical transformations within these compartments. Close
Basics of cost accounting and cost estimation, cost-estimating techniques for engineering projects, quantitative techniques for forecasting costs, cost of quality. Basic engineering economics, including capital investment in tangible and intangible assets. Engineering project management techniques, including budget development, sensitivity analysis, risk and uncertainty analysis and total quality management concepts.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Close
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close
This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Close
Introduction to AutoCAD and computer graphics. Introduction to SAP2000 finite element code. Application of software and design codes to analyze and design full structure. Case studies and projects taken from architectural drawings of real structures. Corequisites: EN 345
Modeling and Simulation of Environmental Systems (3-0-6)
(Lecture-Lab-Study Hours)
Incorporation of fundamental phenomena into mass balances to describe the fate and transport of contaminants in lakes, rivers, estuaries, groundwater, the atmosphere, and in pollution control processes. Several computer projects involving numerical solutions of models are required. Close
This course includes both experimentation and open-ended design problems that are integrated with the Materials Processing course taught concurrently. Core design themes are further developed. Close
Principles of environmental reactions with emphasis on aquatic chemistry; reaction and phase equilibria; acid-base and carbonate systems; oxidation-reduction; colloids; organic contaminants classes, sources, and fates; groundwater chemistry; and atmospheric chemistry.
Introduction to Environmental Engineering Systems (3-0-0)
(Lecture-Lab-Study Hours)
An introduction to environmental engineering, including: environmental legislation; water chemistry including pH and alkalinity relationships, solubility and phase equilibria; environmental biology; fate and transport of contaminants in lakes, streams and groundwater; design and analysis of mechanical, physicochemical and biochemical treatment processes.
A study of the chemical and physical operation involved in treatment of potable water, industrial process water, and wastewater effluent; topics include chemical precipitation, coagulation, flocculation, sedimentation, filtration, disinfection, ion exchange, oxidation, adsorption, flotation, and membrane processes. A physical-chemical treatment plant design project is an integral part of the course. The approach of unit operations and unit processes is stressed.
Introduction to Environmental Engineering Systems (3-0-0)
(Lecture-Lab-Study Hours)
An introduction to environmental engineering, including: environmental legislation; water chemistry including pH and alkalinity relationships, solubility and phase equilibria; environmental biology; fate and transport of contaminants in lakes, streams and groundwater; design and analysis of mechanical, physicochemical and biochemical treatment processes.
Biological basis of wastewater treatment; river systems and wastewater treatment works analogy; population dynamics; food sources; aerobic and anaerobic systems; reaction kinetics and parameters affecting waste removal; fundamentals of mass transfer and gas transfer; trickling filter, and activated sludge process; aerated lagoons; stabilization ponds; nitrification; denitrification; sludge concentration; aerobic sludge digestion; anaerobic sludge digestio and sludge conditioning; sludge drying, vacuum filtration; and incineration and ocean disposal. A biological treatment plant design project is an integral part of the course.
Introduction to Environmental Engineering Systems (3-0-0)
(Lecture-Lab-Study Hours)
An introduction to environmental engineering, including: environmental legislation; water chemistry including pH and alkalinity relationships, solubility and phase equilibria; environmental biology; fate and transport of contaminants in lakes, streams and groundwater; design and analysis of mechanical, physicochemical and biochemical treatment processes.
A survey of biological topics concerning the environment: ecology, population dynamics, pollution microbiology, aquatic biology, bioconcentration, limnology, stream sanitation, nutrient cycles, and toxicology.
Senior design courses. Complete design sequence with a required capstone project spanning two semesters. While the focus is on the capstone disciplinary design experience, it includes the two-credit core module on E 421 Engineering Economic Design during the first semester.
Descriptive statistics, pictorial and tabular methods, measures of location and of variability, sample space and events, probability and independence, Bayes' formula, discrete random variables, densities and moments, normal, gamma, exponential and Weibull distributions, distribution of the sum and average of random samples, the central limit theorem, confidence intervals for the mean and the variance, hypothesis testing and p-values, applications for prediction in a regression model. A statistical computer package is used throughout the course for teaching and for project assignments.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
An introduction to the principles and control of air pollution, including: types and measurement of air pollution; air pollution chemistry; atmospheric dispersion modeling; compressible fluid flow; particle dynamics; ventilation systems; inertial devices; electrostatic precipitators; scrubbers; filters; absorption and adsorption; combustion; and condensation.
Introduction to Environmental Engineering Systems (3-0-0)
(Lecture-Lab-Study Hours)
An introduction to environmental engineering, including: environmental legislation; water chemistry including pH and alkalinity relationships, solubility and phase equilibria; environmental biology; fate and transport of contaminants in lakes, streams and groundwater; design and analysis of mechanical, physicochemical and biochemical treatment processes.
Soil is a mixture of inorganic and organic solids, air, water, and microorganisms. Soil affects the environmental chemistry through the interactions at solution-solid and air-solid interfaces, and the soil in turn is affected by the environmental and human activities. Soil science is not only important to agriculture, but also to diverse fields, such as environmental engineering, biogeochemistry, and hydrology. This course will enable students to understand the chemical properties of soil, soil minerals, natural surfaces, and mechanisms regulating solute chemistry in soil solutions. The fate and transport of inorganic and organic pollutants in soil and soil remediation technologies are discussed. One year of introductory chemistry is required for students who want to take this course.
Senior design courses. Complete design sequence with a required capstone project spanning two semesters. While the focus is on the capstone disciplinary design experience, it includes the two-credit core module on E 421 Engineering Economic Design during the first semester.
Senior design courses. Complete design sequence with a required capstone project spanning two semesters. While the focus is on the capstone disciplinary design experience, it includes the two-credit core module on E 421 Engineering Economic Design during the first semester. Close