Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Corequisites: CH 117
General Chemistry Laboratory I (0-3-1)
(Lecture-Lab-Study Hours)
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Close
Laboratory work to accompany CH 115: experiments of atomic spectra, stoichiometric analysis, qualitative analysis, and organic and inorganic syntheses, and kinetics. Corequisites: CH 115,
General Chemistry I (3-0-6)
(Lecture-Lab-Study Hours)
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout.
This is the first half of a one-credit, two-semester course that consists of a set of engineering experiences such as lectures, small group sessions, on-line modules and visits. Students are required to complete a specified number of experiences each semester and are given credit at the end of the second half of the course which is E102. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis. Course is pass/fail.
Engineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computer-aided design and manufacturing (CAD/CAM) using numerically-controlled (NC) machines.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Corequisites: E 115,
Introduction to Programming (1-2-3)
(Lecture-Lab-Study Hours)
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I). Close
Engineering graphics: principles of orthographic and auxiliary projections, pictorial presentation of engineering designs, dimensioning and tolerance, sectional and detail views, assembly drawings. Descriptive geometry. Engineering figures and graphs. Solid modeling introduction to computer-aided design and manufacturing (CAD/CAM) using numerically-controlled (NC) machines. Close
An introduction to the use of an advanced programming language for use in engineering applications, using C++ as the basic programming language and Microsoft Visual C++ as the program development environment. Topics covered include basic syntax (data types and structures, input/output instructions, arithmetic instructions, loop constructs, functions, subroutines, etc.) needed to solve basic engineering problems as well as an introduction to advanced topics (use of files, principles of objects and classes, libraries, etc.). Algorithmic thinking for development of computational programs and control programs from mathematical and other representations of the problems will be developed. Basic concepts of computer architectures impacting the understanding of a high-level programming language will be covered. Basic concepts of a microcontroller architecture impacting the use of a high-level programming language for development of microcontroller software will be covered, drawing specifically on the microcontroller used in E121 (Engineering Design I).
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Corequisites: MA 115
Calculus I (4-0-0)
(Lecture-Lab-Study Hours)
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
This is a two-semester course that consists of a set of engineering experiences such as lectures, small group sessions, on-line modules and visits. Students are required to complete a specified number of experiences each semester and are given credit at the end of the semester. The goal is to introduce students to the engineering profession, engineering disciplines, college success strategies, Stevens research and other engaging activities and to Technogenesis.
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Corequisites: E 126
Mechanics of Solids (4-0-8)
(Lecture-Lab-Study Hours)
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures. Close
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Close
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Corequisites: MA 221,
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves.
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Vectors, kinetics, Newton’s laws, dynamics or particles, work and energy, friction, conserverative forces, linear momentum, center-of-mass and relative motion, collisions, angular momentum, static equilibrium, rigid body rotation, Newton’s law of gravity, simple harmonic motion, wave motion and sound. Close
Review of matrix operations, Cramer’s rule, row reduction of matrices; inverse of a matrix, eigenvalues and eigenvectors; systems of linear algebraic equations; matrix methods for linear systems of differential equations, normal form, homogeneous constant coefficient systems, complex eigenvalues, nonhomogeneous systems, the matrix exponential; double and triple integrals; polar, cylindrical and spherical coordinates; surface and line integrals; integral theorems of Green, Gauss and Stokes. Corequisites: MA 221
Differential Equations (4-0-8)
(Lecture-Lab-Study Hours)
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed.
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close
Ideal circuit elements; Kirchoff laws and nodal analysis; source transformations; Thevenin/Norton theorems; operational amplifiers; response of RL, RC and RLC circuits; sinusoidal sources and steady state analysis; analysis in frequenct domain; average and RMS power; linear and ideal transformers; linear models for transistors and diodes; analysis in the s-domain; Laplace transforms; transfer functions. Close
Concepts of heat and work; First and Second Laws for closed and open systems including steady processes and cycles; thermodynamic properties of substances and interrelationships; phase change and phase equilibrium; chemical reactions and chemical equilibrium; representative applications. Introduction to energy conversion systems, including direct energy conversion in fuel-cells, photo-voltaic systems, etc.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
An introduction to differential and integral calculus for functions of one variable. The differential calculus includes limits, continuity, the definition of the derivative, rules for differentiation, and applications to curve sketching, optimization, and elementary initial value problems. The integral calculus includes the definition of the definite integral, the Fundamental Theorem of Calculus, techniques for finding antiderivatives, and applications of the definite integral. Transcendental and inverse functions are included throughout. Close
Simple harmonic motion, oscillations and waves; wave-particle dualism; the Schrödinger equation and its interpretation; wave functions; the Heisenberg uncertainty principle; quantum mechanical tunneling and application; quantum mechanics of a particle in a "box," the hydrogen atom; electronic spin; properties of many electron atoms; atomic spectra; principles of lasers and applications; electrons in solids; conductors and semi-conductors; the n-p junction and the transistor; properties of atomic nuclei; radioactivity; fusion and fission.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close
This course presents the tools and techniques for project definition, work breakdown, estimating, resource planning, critical path development, scheduling, project monitoring and control and scope management. Students will use project management software to accomplish these tasks. In addition, the student will become familiar with the responsibilities, skills and effective leadership styles of a good project manager. The role organization design plays in project management will also be addressed.
This course deals with the problems associated with the management of engineering personnel, projects and organizations. The applications of the functions of management to engineering related operations, including the engineering aspects of products and process development, are reviewed. The course requires students to apply their knowledge of human behavior, economic analysis and science to solve problems in the management of technologically oriented organizations. The capstone of the course is a term paper analyzing an engineering management problem taken from actual practice. Close
This course deals with the problems associated with the management of engineering personnel, projects and organizations. The applications of the functions of management to engineering related operations, including the engineering aspects of products and process development, are reviewed. The course requires students to apply their knowledge of human behavior, economic analysis and science to solve problems in the management of technologically oriented organizations. The capstone of the course is a term paper analyzing an engineering management problem taken from actual practice.
Fluid properties: fluid statics, stability of floating bodies, conservation of mass, Euler and Bernoulli equations, impulse-momentum principle, laminar and turbulent flow, dimensional analysis and model testing, analysis of flow in pipes, open channel flow, hydrodynamic lift and drag. Practical civil engineering applications are stressed.
Fundamental concepts of particle statics, equivalent force systems, equilibrium of rigid bodies, analysis of trusses and frames, forces in beam and machine parts, stress and strain, tension, shear and bending moment, flexure, combined loading, energy methods, statically indeterminate structures. Close
This course includes both experimentation and open-ended design problems that are integrated with the Materials Processing course taught concurrently. Core design themes are further developed. Corequisites: E 344
Materials Processing (3-0-6)
(Lecture-Lab-Study Hours)
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products. Close
An introduction is provided to the important engineering properties of materials, to the scientific understanding of those properties and to the methods of controlling them. This is provided in the context of the processing of materials to produce products.
Atomic structure and periodic properties, stoichiometry, properties of gases, thermochemistry, chemical bond types, intermolecular forces, liquids and solids, chemical kinetics and introduction to organic chemistry and biochemistry. Close
Provides a working knowledge of basic statistics as it is most often applied in engineering. Topics include: fundamentals of probability theory, review of distributions of special interest in statistics, analysis and enumeration of data, linear regression and correlation, statistical design of engineering experiments, completely randomized design, randomized block design, factorial experiments, engineering applications and use of the computer as a tool for statistical analysis.
This course will provide students with a sound foundation in the field of data communications, networking, and distributed processing systems, so that they can better understand and manage the information technology and systems that they will encounter in their careers. A comprehensive survey of communication protocols, hardware and software required to deliver information from a source through a medium to a destination. Digital, analog, security, network and network management requirements for data communication are introduced. Emphasis will be on the managerial aspects of data communications.
This course introduces students to the fundamental concepts of financial and managerial accounting, with an emphasis on actions managers can take to more effectively address the goals of the firm. Key topics covered include the preparation and analysis of financial statements, particularly creating cash flow statements needed for engineering economic analysis; consideration of variable costs, fixed costs, cost of goods sold, operating costs, product costs, period costs; job costing and process costing; application of accounting information for decision-making: marketing decisions, production decisions; capital budgeting: depreciation, taxation; budgeting process, master budgets, flexible budgets, analysis of budget variances; asset valuation, and inventory costing. The laboratory portion of the course provides the student opportunity to use the personal computer for solving problems related to the major topics of the course, such as spreadsheet analysis, and in addition covers managerial topics, including sessions focused on group dynamics and teamwork, research using the Internet and business ethics
Basics of cost accounting and cost estimation, cost-estimating techniques for engineering projects, quantitative techniques for forecasting costs, cost of quality. Basic engineering economics, including capital investment in tangible and intangible assets. Engineering project management techniques, including budget development, sensitivity analysis, risk and uncertainty analysis and total quality management concepts.
This course introduces students to the process of design and seeks to engage their enthusiasm for engineering from the very beginning of the program. The engineering method is used in the design and manufacture of a product. Product dissection is exploited to evaluate how others have solved design problems. Development is started of competencies in professional practice topics, primarily: effective group participation, project management, cost estimation, communication skills and ethics. Engineering Design I is linked to and taught concurrently with the Engineering Graphics course. Engineering graphics are used in the design projects and the theme of "fit to form" is developed. Close
This course will continue the freshman year experience in design. The design projects will be linked to the Mechanics of Solids course (integrated Statics and Strength of Materials) taught concurrently. The engineering method introduced in Engineering Design I will be reinforced. Further introduction of professional practice topics will be linked to their application and testing in case studies and project work. Basic concepts of design for environment and aesthetics will be introduced. Close
This course continues the experiential sequence in design. Design projects are linked with Mechanics of Solids topics taught concurrently. Core design themes are further developed. Close
This course continues the experiential sequence in design. Design projects are in, and lectures address the area of Electronics and Instrumentation. Core design themes are further developed. Close
This course allows each discipline to address design topics specific to their discipline, but in the context of how design in the discipline fits into an integrated product and process development (IPPD) paradigm where appropriate. Even where IPPD is not significant to the discipline, students will gain some appreciation through specific requirements. The later part of this course is structured to allow for project selection, team formation and preparation of a proposal suitable for submission to a potential sponsor for the senior design capstone project. The core design themes will be further developed. Offered as a discipline specific course (e.g.: CE322, CHE322, CPE322, EE322, EM322, EN322, ME322, PEP322). Corequisites: E 345,
Modeling and Simulation (3-0-6)
(Lecture-Lab-Study Hours)
Development of deterministic and non-deterministic models for physical systems; engineering applications; simulation tools for deterministic and non deterministic systems; case studies and projects. Offered as a discipline specific course (e.g.: CE345, CHE345, CPE345, EE345, EM345, EN345,ME345, PEP345). Close
Basics of cost accounting and cost estimation, cost-estimating techniques for engineering projects, quantitative techniques for forecasting costs, cost of quality. Basic engineering economics, including capital investment in tangible and intangible assets. Engineering project management techniques, including budget development, sensitivity analysis, risk and uncertainty analysis and total quality management concepts. Close
This course includes both experimentation and open-ended design problems that are integrated with the Materials Processing course taught concurrently. Core design themes are further developed. Close
This course covers contemporary decision support models of forecasting, optimization and simulation for management. Students will learn how to identify the problem situation, choose the appropriate methods, collect the data and find the solution. The course also covers handling the information and generating alternative decisions based upon operations research optimization, statistical simulation, and systems dynamic forecasting. Computer simulations will be performed on PCs using user-friendly graphical interface with multimedia report generation for visualization and animation. Students will also be trained in management simulations for group decision support.
Provides a working knowledge of basic statistics as it is most often applied in engineering. Topics include: fundamentals of probability theory, review of distributions of special interest in statistics, analysis and enumeration of data, linear regression and correlation, statistical design of engineering experiments, completely randomized design, randomized block design, factorial experiments, engineering applications and use of the computer as a tool for statistical analysis. Close
This course will provide the student with the underlying management concepts and principles of Total Quality Management (TQM) and how they apply to Engineering Management. The ideas and concepts of Frederick Winslow Taylor, Edward Deming, Joe Juran, Phil Crosby, Armand Fiegenbaum and Karou Ishikawa will be presented and discussed in relation to how management thought has developed from Scientific Management to Quality Management. Discussion of the Baldridge and Deming awards will include how leadership, information and analysis, strategic quality planning, human resource utilization, quality assurance and customer satisfaction relate to QM in Engineering Management. The use of concurrent engineering in research, design, & engineering will be explored. The student will learn various TQM tools explored such as quality function deployment, design for cost and cost of quality. The students will learn the methodology and techniques of continuous process improvement and use this knowledge to analyze and correct defects as part of a team project.
This project-based course addresses the fundamentals of systems engineering. Principles and concepts of systems engineering within a life-cycle perspective are presented through case studies and applied throughout the course to a student-selected team project. The initial focus is on the understanding of business drivers for systems engineering and the generation of innovative ideas. Students then engage in analysis, synthesis, and evaluation activities as they progress through the conceptual and preliminary design phases. Emphasis is placed on tools and methodologies for system evaluation during all phases of the design process with the goal of enhancing the effectiveness and efficiency of deployed systems as well as reducing operational and support costs.
Pre or Corequisite: EM 365 and must be majoring in EM.
This year long two-course sequence involves the students in a small-team Engineering Management project. The problem for the project is taken from industry, business, government or a not-for-profit organization. Each student team works with a client and is expected to collect data, analyze it and develop a design by the end of the first semester. In the second semester the design solution of the problem is completed and a written report is submitted for binding. During the year, oral and written progress reports are presented to peers and clients. The total project involves the application of the subject areas covered in the EM 385 Engineering Management Laboratory course, as well as skills learned in the other technical and non-technical courses of the Engineering Management curriculum.
Prerequisite: EM 270, EM 275, EM 301, EM 322, EM 345, EM 385, E 355
This course deals with the problems associated with the management of engineering personnel, projects and organizations. The applications of the functions of management to engineering related operations, including the engineering aspects of products and process development, are reviewed. The course requires students to apply their knowledge of human behavior, economic analysis and science to solve problems in the management of technologically oriented organizations. The capstone of the course is a term paper analyzing an engineering management problem taken from actual practice. Close
This course presents the tools and techniques for project definition, work breakdown, estimating, resource planning, critical path development, scheduling, project monitoring and control and scope management. Students will use project management software to accomplish these tasks. In addition, the student will become familiar with the responsibilities, skills and effective leadership styles of a good project manager. The role organization design plays in project management will also be addressed.
This course introduces students to the fundamental concepts of financial and managerial accounting, with an emphasis on actions managers can take to more effectively address the goals of the firm. Key topics covered include the preparation and analysis of financial statements, particularly creating cash flow statements needed for engineering economic analysis; consideration of variable costs, fixed costs, cost of goods sold, operating costs, product costs, period costs; job costing and process costing; application of accounting information for decision-making: marketing decisions, production decisions; capital budgeting: depreciation, taxation; budgeting process, master budgets, flexible budgets, analysis of budget variances; asset valuation, and inventory costing. The laboratory portion of the course provides the student opportunity to use the personal computer for solving problems related to the major topics of the course, such as spreadsheet analysis, and in addition covers managerial topics, including sessions focused on group dynamics and teamwork, research using the Internet and business ethics Close
Provides students with "hands-on" experience of management of new product (process) development, which they can use in their senior design projects. Students will study the stages of product (technology) life cycle from concept to discharge of a product. Study includes systems consisting of hardware and software design, manufacturing, testing and installation based on Integrated Product and Process Development (IPPD) model. Different tools for forecasting, optimization and simulation are provided for students to identify the problem, select the project, form the team and prepare proposals suitable for submission to a potential sponsor for the senior design capstone project. Proposal documented according to ISO 9000 Quality Management and ISO 14000 Environment Management Standards.
This course covers contemporary decision support models of forecasting, optimization and simulation for management. Students will learn how to identify the problem situation, choose the appropriate methods, collect the data and find the solution. The course also covers handling the information and generating alternative decisions based upon operations research optimization, statistical simulation, and systems dynamic forecasting. Computer simulations will be performed on PCs using user-friendly graphical interface with multimedia report generation for visualization and animation. Students will also be trained in management simulations for group decision support.
This project-based course addresses the fundamentals of systems engineering. Principles and concepts of systems engineering within a life-cycle perspective are presented through case studies and applied throughout the course to a student-selected team project. The initial focus is on the understanding of business drivers for systems engineering and the generation of innovative ideas. Students then engage in analysis, synthesis, and evaluation activities as they progress through the conceptual and preliminary design phases. Emphasis is placed on tools and methodologies for system evaluation during all phases of the design process with the goal of enhancing the effectiveness and efficiency of deployed systems as well as reducing operational and support costs.
Pre or Corequisite: EM 365 and must be majoring in EM.
This course covers the basics of cost accounting and cost estimation for engineering projects. Basic engineering economics topics include mathematics of finance, time value of money and economic analyses using three worths, internal rate of return and benefit cost figures of merit. Advanced topics include after tax analysis, inflation, risk analysis and multi attribute analysis. Laboratory exercises include introduction to the use of spreadsheet and a series of labs that parallel the lecture portion of the course. The student is introduced to an economic model (Spreadsheet to Determine the Economics of Engineering of Design and Development - SEED), which is used to design and provide typical venture capital financials. These financials are income statement, balance sheet, break-even analysis and sensitivity analysis.
The focus of this course is on the behavior of and interactions between individual participants in the economic system. In addition to providing a theoretical basis for the analysis of these economic questions, the course also develops applications of these theories to a number of current problems. Topics include: the nature of economic decisions, the theory of market processes, models of imperfect competition, public policy towards competition, the allocation of factors of production, discrimination, poverty and earnings, and energy.
Students learn about planning, organizing, staffing, directing and controlling the production of goods and providing service functions of an organization. Main stages of production cycle and components will include raw materials, personnel, machines, and buildings. Specific topics covered will include forecasting, product design and process planning, allocation of scarce resources, capacity planning and facility location, materials management, scheduling, office layout, and total quality management.
Prerequisite: Requires junior or senior standing and EM 457 or BT 223 or EM 605.
This year long two-course sequence involves the students in a small-team Engineering Management project. The problem for the project is taken from industry, business, government or a not-for-profit organization. Each student team works with a client and is expected to collect data, analyze it and develop a design by the end of the first semester. In the second semester the design solution of the problem is completed and a written report is submitted for binding. During the year, oral and written progress reports are presented to peers and clients. The total project involves the application of the subject areas covered in the EM 385 Engineering Management Laboratory course, as well as skills learned in the other technical and non-technical courses of the Engineering Management curriculum.
The forces which govern the overall performance of the national economy are covered. Areas discussed include: supply and demand analysis, national income theory, monetary systems, alternative approaches to economic policy, current macroeconomic problems, and international economies.