Particle motion in one dimension. Simple harmonic oscillators. Motion in two and three dimensions, kinematics, work and energy, conservative forces, central forces, and scattering. Systems of particles, linear and angular momentum theorems, collisions, linear spring systems, and normal modes. Lagrange’s equations and applications to simple systems. Introduction to moment of inertia tensor and to Hamilton’s equations.
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Particle motion in one dimension. Simple harmonic oscillators. Motion in two and three dimensions, kinematics, work and energy, conservative forces, central forces, scattering. Systems of particles, linear and angular momentum theorems, collisions, linear spring systems, normal modes. Lagrange's equations, applications to simple systems. Introduction to moment of inertia tensor and to Hamilton's equations Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Charged particle motion in electric and magnetic fields; electron and ion emission; ion-surface interaction; electrical breakdown in gases; dark discharges and DC glow discharges; confined discharge; AC, RF, and microwave discharges; arc discharges, sparks, and corona discharges; non-thermal gas discharges at atmospheric pressure; and discharge and low-temperature plasma generation. Typical texts: J.R. Roth, Industrial Plasma Engineering: Principles, Vol. 1, and Y.P. Raizer, Gas Discharge Physics.
This course is designed to make students comfortable with the handling and use of various optical components, instruments, techniques,and applications. Included will be the characterization of lens, wavefront division and multiple beam interferometry, partial coherence, spectrophotometry,coherent propogation, and properties of optical fibers.
The general study of field phenomena; scalar and vector fields and waves; dispersion phase and group velocity; interference, diffraction and polarization; coherence and correlation; geometric and physical optics. Typical text: Hecht and Zajac, Optics. Spring semester. Close
This course is meant to serve as an introduction to formal quantum mechanics as well as to apply the basic formalism to several generic and important applications.
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Simple harmonic motion, oscillations and pendulums; Fourier analysis; wave properties; wave-particle dualism; the Schrödinger equation and its interpretation; wave functions; the Heisenberg uncertainty principle; quantum mechanical tunneling and application; quantum mechanics of a particle in a "box," the hydrogen atom; electronic spin; properties of many electron atoms; atomic spectra; principles of lasers and applications; electrons in solids; conductors and semiconductors; the n-p junction and the transistor; properties of atomic nuclei; radioactivity; fusion and fission.
Lectures, demonstrations and laboratory experiments, selected from among the following topics, depending on student interest: vacuum technology; thin-film preparation; scanning electron microscopy; infrared spectroscopy, ellipsometry: electron spectroscopies-Auger, photoelectron, LEED; ion spectroscopies-SIMS, IBS, field emission; surface properties-area, roughness, and surface tension.
This course is designed to make students comfortable with the handling and use of various optical components, instruments, techniques,and applications. Included will be the characterization of lens, wavefront division and multiple beam interferometry, partial coherence, spectrophotometry,coherent propogation, and properties of optical fibers.
Basic concepts of quantum mechanics, states, operators; time development of Schrödinger and Heisenberg pictures; representation theory; symmetries; perturbation theory; systems of identical particles, L-S and j-j coupling; fine and hyperfine structure; scattering theory; molecular structure.
Particle motion in one dimension. Simple harmonic oscillators. Motion in two and three dimensions, kinematics, work and energy, conservative forces, central forces, and scattering. Systems of particles, linear and angular momentum theorems, collisions, linear spring systems, and normal modes. Lagrange’s equations and applications to simple systems. Introduction to moment of inertia tensor and to Hamilton’s equations. Close
Quantum Mechanics and Engineering Applications (3-0-6)
(Lecture-Lab-Study Hours)
This course is meant to serve as an introduction to formal quantum mechanics as well as to apply the basic formalism to several generic and important applications. Close
Basic plasma physics; some atomic processes; and plasma diagnostics. Plasma production; DC glow discharges and RF glow discharges; magnetron discharges. Plasma-surface interaction; sputter deposition of thin films; reactive ion etching, ion milling, and texturing; electron beam-assisted chemical vapor deposition; and ion implantation. Sputtering systems; ion sources; electron sources; and ion beam handling.
Typical texts: Chapman, Glow Discharge Processes; Brodie, Muray, The Physics of Micro-fabrication.