Interpretation of infrared, ultraviolet, nuclear magnetic resonance, and mass spectra. Emphasis is on the use of these spectroscopic methods in identification and structure determination of organic compounds. Corequisites: CH 243
Organic Chemistry I (3-4-6)
(Lecture-Lab-Study Hours)
Principles of descriptive organic chemistry; structural theory; reactions of aliphatic compounds; and stereochemistry. Close
Principles of descriptive organic chemistry; structural theory; reactions of aliphatic compounds; stereochemistry. Laboratory includes introduction to organic reaction and separation techniques, reactions of functional groups, synthesis. Close
Theoretical and experimental approach to spectroscopy and chromatography. Includes ultraviolet, visible and infrared absorption by molecules, emission spectroscopy, nuclear magnetic resonance, mass spectroscopy and gas-liquid and high-performance chromatography.
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close
Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acid-base titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Close
Chemical kinetics, solution theories with applications to separation processes, electrolytes, polyelectrolytes, regular solutions and phase equilibria, and laboratory practice in the measurements of physical properties and rate processes.
Laws of thermodynamics, thermodynamic functions, and the foundations of statistical thermodynamics. The chemical potential is applied to phase equilibria, chemical reaction equilibria, and solution theory, for both ideal and real systems. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Concepts of heat and work; First and Second Laws for closed and open systems including steady processes and cycles; thermodynamic properties of substances and interrelationships; phase change and phase equilibrium; chemical reactions and chemical equilibrium; representative applications. Introduction to energy conversion systems, including direct energy conversion in fuel-cells, photo-voltaic systems, etc. Close
Introduction to the study of molecular basis of inheritance. Starts with classical Mendelian genetics and proceeds to the study and function of DNA, gene expression and regulation in prokaryotes and eukaryotes, genome dynamics and the role of genes in development, and cancer. All topics include discussions of current research advances. Accompanied by laboratory section that explores the lecture topics in standard wet laboratory experiments and in computer simulations.
The structure and function of the cell and its subcellular organelles is studied. Biological macromolecules, enzymes, biomembranes, biological transport, bioenergetics, DNA replication, protein synthesis and secretion, motility, and cancer are covered. Cell biology experiments and interactive computer simulation exercises are conducted in the laboratory. Close
Biological principles and their physical and chemical aspects are explored at the cellular and molecular level. Major emphasis is placed on cell structure, the processes of energy conversion by plant and animal cells, genetics and evolution, and applications to biotechnology. Close
Introduces the essentials of probability theory and elementary statistics. Lectures and assignments greatly stress the manifold applications of probability and statistics to computer science, production management, quality control, and reliability. A statistical computer package is used throughout the course for teaching and for assignments. Contents include: descriptive statistics, pictorial and tabular methods, and measures of location and of variability; sample space and events, probability axioms, and counting techniques; conditional probability and independence, and Bayes' formula; discrete random variables, distribution functions and moments, and binomial and Poisson distributions; continuous random variables, densities and moments, normal, gamma, and exponential and Weibull distributions unions; distribution of the sum and average of random samples; the Central Limit Theorem; confidence intervals for the mean and the variance; hypothesis testing and p-values, and applications for the mean; simple linear regression, and estimation of and inference about the parameters; and correlation and prediction in a regression model.
Continues from MA 115 with improper integrals, infinite series, Taylor series, and Taylor polynomials. Vectors operations in 3-space, mathematical descriptions of lines and planes, and single-variable calculus for parametric curves. Introduction to calculus for functions of two or more variables including graphical representations, partial derivatives, the gradient vector, directional derivatives, applications to optimization, and double integrals in rectangular and polar coordinates. Close
Simple harmonic motion, oscillations and pendulums; Fourier analysis; wave properties; wave-particle dualism; the Schrödinger equation and its interpretation; wave functions; the Heisenberg uncertainty principle; quantum mechanical tunneling and application; quantum mechanics of a particle in a "box," the hydrogen atom; electronic spin; properties of many electron atoms; atomic spectra; principles of lasers and applications; electrons in solids; conductors and semiconductors; the n-p junction and the transistor; properties of atomic nuclei; radioactivity; fusion and fission.
Coulomb’s law, concepts of electric field and potential, Gauss’ law, capacitance, current and resistance, DC and R-C transient circuits, magnetic fields, Ampere’s law, Faraday’s law of induction, inductance, A/C circuits, electromagnetic oscillations, Maxwell’s equations and electromagnetic waves. Close
Ordinary differential equations of first and second order, homogeneous and non-homogeneous equations; improper integrals, Laplace transforms; review of infinite series, series solutions of ordinary differential equations near an ordinary point; boundary-value problems; orthogonal functions; Fourier series; separation of variables for partial differential equations. Close
Theory and practice of electrochemical methods in analytical chemistry. Includes potentiometry, coulometry, amperometry, polarography, voltammetry, conductivity, etc.
Phase equilibria, properties of solutions, chemical equilibrium, strong and weak acids and bases, buffer solutions and titrations, solubility, thermodynamics, electrochemistry, properties of the elements and nuclear chemistry. Close
Laboratory work to accompany CH 116: analytical techniques properties of solutions, chemical and phase equilibria, acid-base titrations, thermodynamic properties, electrochemical cells, and properties of chemical elements. Close
Discussions include metabolic pathways in biosynthesis and catabolism of biomolecules, including carbohydrates, proteins, lipids, and nucleic acids. The hormonal regulation of metabolism, as well as vitamin metabolism, is presented.
Continuation of Ch 241; reactions of aromatic compounds; infrared and nuclear magnetic resonance spectroscopy; laboratory work in synthesis, spectroscopy, and chromatographic separation techniques. Close
The focus of this course is on the behavior of and interactions between individual participants in the economic system. In addition to providing a theoretical basis for the analysis of these economic questions, the course also develops applications of these theories to a number of current problems. Topics include: the nature of economic decisions, the theory of market processes, models of imperfect competition, public policy towards competition, the allocation of factors of production, discrimination, poverty and earnings, and energy.
An advanced course applying principles and theory to problems in chemical analysis. Theory of separations, including distillation, chromatography, and ultracentrifugation; heterogeneity and surface effects; and sampling and its problems.
A comprehensive hands-on course covering both fundamentals and modern aspects of mass spectrometry, with emphasis on biological and biochemical applications. Topics include: contemporary methods of gas phase ion formation [electron ionization (EI), chemical ionization (CI), inductively coupled plasma (ICP), fast atom bombardment (FAB), plasma desorption (PD), electrospray (ESI), atmospheric pressure chemical ionization (APCI), matrix assisted laser desorption ionization (MALDI), detection (electron and photomultipliers, and array detectors), and mass analysis [magnetic deflection, quadrupole, ion trap, time of flight (TOF), and Fourier-transform (FTMS)]. Detailed interpretation of organic mass spectra for structural information, with special emphasis on even-electron-ion fragmentation. Qualitative and quantitative applications in environmental, biological, pharmacological, forensic, and geochemical sciences.
Participation in a small group project, under the guidance of a faculty member, whose prior approval is required. Experimentation, application of chemical knowledge and developmental research leading to the implementation of a working chemical process. Individual or group written report required.
Individual research project under the guidance of a chemistry faculty member, whose prior approval is required. A written report in acceptable journal format and an oral presentation are required at the end of the project.
Advanced treatment of the theory and practice of spectrometric methods (mass spectrometry, nuclear magnetic resonance, etc.) and electroanalytical methods with emphasis on Fourier Transform techniques (FTIR, FTNMR, etc.) and hyphenated methods (gc-ms, etc.), the instrument-sample interaction, and signal sampling. A survey of computational methods, such as factor analysis and other chemometric methods is also included.
Instrumental Analysis I - Spectroscopy and Chromatography (3-4-8)
(Lecture-Lab-Study Hours)
Theoretical and experimental approach to spectroscopy and chromatography. Includes ultraviolet, visible and infrared absorption by molecules, emission spectroscopy, nuclear magnetic resonance, mass spectroscopy and gas-liquid and high-performance chromatography. Close
Lecture and laboratory; ionic solids, lattice energy, and factors determining solubility; thermodynamics in inorganic synthesis and analysis; acid-base equilibria; and systematic chemistry of the halogens and other non-metals.
Instrumental Analysis I - Spectroscopy and Chromatography (3-4-8)
(Lecture-Lab-Study Hours)
Theoretical and experimental approach to spectroscopy and chromatography. Includes ultraviolet, visible and infrared absorption by molecules, emission spectroscopy, nuclear magnetic resonance, mass spectroscopy and gas-liquid and high-performance chromatography. Close
Quantum mechanics of molecular systems are developed. The techniques of approximation methods are employed for molecular binding and spectroscopic transitions. Examples are taken from infrared, visible, ultraviolet, microwave, and nuclear magnetic resonance spectroscopy. Close
The relationship of the chemical and physical structure of biological macromolecules to their biological functions as derived from osmotic pressure, viscosity, light and X-ray scatting, diffusion, ultracentrifugation, and electrophoresis. The course is subdivided into: 1) properties, functions, and interrelations of biological macromolecules, e.g., polysaccharides, proteins, and nucleic acids; 2) correlation of physical properties of macromolecules in solution; 3) conformational properties of proteins and nucleic acids; and 4) aspects of metal ions in biological systems.
Chemical kinetics, solution theories with applications to separation processes, electrolytes, polyelectrolytes, regular solutions and phase equilibria, and laboratory practice in the measurements of physical properties and rate processes. Close
Participation in a small group project, under the guidance of a faculty member, whose prior approval is required. Experimentation, application of chemical knowledge and developmental research leading to the implementation of a working chemical process. Individual or group written report required.
Individual research project under the guidance of a chemistry faculty member, whose prior approval is required. A written report in acceptable journal format and an oral presentation are required at the end of the project.