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United States It is believed that the preva- ' currently associated with traditional 
lence of prostate cancer is high m 50 therapies such as radical prostatectomy 
year-olds, with some 30% testing positive. 
However, many of these cancers remain asymptomatic until 
extensive local growth or metastasis of the tumor has occurred, 
or until the individual dies of some other disease. 

Clinical assessment of the prostate gland is difficult due to 
its inaccessible location. In the past, this has been done by 
physical examination, prostatic fluid inspection, biopsy, or 
surgery. At present, the most commonly used screening tech- 
niques for prostate cancer are the digital rectal examination 
and the PSA test. Physicians widely use PSA testing for the di- 
agnosis and monitoring of prostate cancer, and the test's role 
is well established. The level of PSA secreted by the prostate 
gland is measured in a simple blood test, and can signal the 
presence of prostate cancer in an asymptomatic man. In spite 
of its widespread use, applying PSA testing for the early de- 
tection and staging of prostate cancer remains controversial 
due to its less-than-ideal specificity. In an effort to improve the 
clinical utility of the PSA test, many investigators have at- 
tempted to increase its discriminating power by normalizing 
the PSA value with the prostate volume. It is generally be- 
lieved that measuring the prostate and/or tumor volume is 
important in interpreting the PSA level. Until now, this task 
has been performed using transrectal ultrasound 2D imaging, 
although with less accuracy than clinically desirable. 

As a result, percutaneous ultra- 
sound-guided prostate therapy techniques such as brachy- 
therapy are currently under intense investigation. Although 
brachytherapy is capable of destroying tumors while preserv- 
ing adjacent structures, the inconsistency in different institu- 
tions suggests that current practice is highly operator- 
dependent. From our past experience, it is clear that a major 
source of this variability is the standard use of conventional, 
hand-held 2D transrectal ultrasound (TRUS) for treatment 
planning, implantation guidance, and treatment monitoring. 

Limitations of 2D TRUS 
It is generally agreed that the conventional 2D TRUS exami- 
nation is an important technique for imaging the prostate. 
However, conventional 2D TRUS has some serious limita- 
tions. They arise because only one thin slice of the patient can 
be viewed at any time, and the location of this image plane is 
controlled by physically manipulating the transducer orien- 
tation. Consequently: 

The surgeon must mentally integrate many 2D images in 
order to form an impression of the 3D anatomy and pathology. 
This process is not only time-consuming and inefficient, but more 
importantly, variable and subjective, possibly leading to incorrect 
decisions in diagnosis, planning, and delivery of the therapy. 
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Distance Measu ement 
In reconstructing th 3D image, any inconsistencies may re- 
sult in image distorti ns, in turn, yielding erroneous distance 
measurements. We valuated the accuracy of distance mea- 
surements by imagi i g a 3D wire phantom of known dimen- 

sions, then measured the distances between the wires. The 
phantom comprised four layers of 0.25-mm diameter surgical 
wires, with eight parallel wires per layer. Each layer and every 
wire were separated from their neighbors by 10.00 mm. The 
wire phantom was immersed in a 7% glycerol solution, and 
then imaged with the 3D system. 

The wire phantom was scanned first with the wires placed 
parallel to the probe's axis of rotation, then with the wires ori- 
ented parallel to the x axis. Nine 3D scans were performed in 
each case, with the phantom positioned at different distances 
from the transducer. The 3D images were reconstructed using 
100 2D images, which were collected over 60". The mean sepa- 
rations between adjacent wires showed that the 3D TRUS sys- 
tem had an error in distance measurements of about 1.0%. 

Volume Measurement in  3D Images of Balloons 
An important application of 3D prostate imaging is for nor- 
malizing the PSA value with the prostate volume. To evaluate 
the accuracy of volume measurements using the 3D TRUS ap- 
proach, we imaged five balloons filled with different known 
volumes of 7% glycerol solution, and compared the measured 
volumes obtained from the 3D images to the true volumes. 
Each image data set consisted of 100 2D images, scanned 
through 60". 

To obtain the volume of each balloon, each 3D image was 
"sliced" 0.2 mm apart to produce successive 2D image planes. 
For each 2D image, the balloon boundary was then manually 
outlined, and the number of pixels within the boundary deter- 
mined. Multiplying the sum of the total number of voxels 
within all the boundaries by the voxel volume yielded the 

Fig. 2. At view here are 3D ultrasound images showing a prostate with a tumor. 
The volume is "sliced" by planes that can be angled and positioned interactively by 
tile user to oDtain the desired view. The prostate image has been "CUI" in the 
transaxial plane to reveal the tumor as a hypoechoic region, located just above the 
periprostatic fat region (a). By slicing the image parasagittally, the prostate can be 
viewed with two simultaneous planes (b). The 3D prostate image has been sliced in a 
coronal plane to view it in a plane not available using conventional 2D TRUS (c). 
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Use of 3D Ultrasound 
in Brachytherapy 

In Vitro Seed Identification Study 
It is now recognized that 3D ultrasound imaging has an im- 
portant role to play in brachytherapy planning. Its role may be 
greatly expanded if brachytherapy seeds could be accurately 
detected and their locations determined. For this reason, we 
conducted a study to determine the variability of measuring 
the location of brachytherapy seeds in 3D TRUS images using 
a tissue-mimicking phantom. Twenty brachytherapy seeds 
were inserted into the phantom in a fan pattern, at varying 
depths. Three-dimensional ultrasound images of the phantom 
were then acquired using the 3D system attached to an Aloka 
SSD 2000 ultrasound machine, using the endo-cavity side fir- 
ing probe. 

Seven observers measured the Cartesian coordinates of all 
the seeds in the 3D image. Each observer "cut" into the 3D im- 
age to reveal sagittal sections of the prostate, and measured 
the x, y, and z coordinates of the seeds in that revealed view. 
This procedure was repeated twice for each observer. An anal- 
ysis of variance (ANOVA) was performed to determine the 
standard error of measurement and the minimum detectable 
change in the coordinates. The results indicated that under 
ideal conditions, such as those found when imaging agar 
phantoms, the location of the seed can be determined at the 
95% confidence level to better than 1 mm. 

Fig. 3. The figure shows a 3D image of a prostate post-hrachytherapy. The 3D 
image has been sliced in a sagittal plane to reveal a few brachytherapy seeds, 
which appear as white regions (a), and a coronal plane showing that the seeds are 
more evident in this plane (h). The coronal plane cannot he obtained with 
conventional 3D TRUS. 

measured volume of the balloon. The results showed an rms 
error of 0.9% and an rms precision of 1.7%. 

Volume Measurements of Prostates In Vitro 
Six prostates, with seminal vesicles and some periprostatic fat 
attached, were harvested from fresh cadavers, fixed and 
stored in 10% formalin. After fixation, their volumes were 
measured by water displacement in a graduated cylinder, and 
found to range from 25 to 98 cm3. A plastic container, lined 
with sponge to decrease sound reflection, was filled with a so- 
lution of 7% glycerol in distilled water. A wire grid was placed 
in the bottom of the container to support the prostates, which 
were angled at 25" to the vertical, mimicking the normal ana- 
tomical alignment of the prostate in the body relative to the 
position of the transrectal ultrasound transducer [6]. 

The 3D transducer assembly was fixed to a metal stand, 
with the distal end of the transducer immersed in the glycerol 
solution within 2 cm of the prostate. After allowing the solu- 
tion to settle, a 3D image of each prostate was obtained, with 
an angle of rotation of about 100". During this rotation, typi- 
cally 100 2D ultrasound images were digitized and recon- 
structed into a 3D image. 

The prostate volumes were measured by manual 
planimetry using a similar technique to the balloon volume 
measurements. Each prostate was "sliced" into 20 to 30 
transaxial slices 2 to 5 mm apart, and the boundary of the pros- 
tate in each slice outlined. The volume was obtained by sum- 
ming the area-thickness products of each slice [6]. A linear 
regression of measured vs. true volume yielded a slope of 
1.006 k0.007. The accuracy (rms deviation from the line of 
identity) of the measurements was 2.6%, and the precision 
(rms deviation from the best fit line) was 2.5%. 

In Vivo Use of 3D Ultrasound 
in  Brachytherapy 
The results above demonstrate that brachytherapy seeds can 
be identified in 3D images of a phantom. Images of prostates 
in vivo show clutter, which may make identification of seeds 
more difficult. In order to assess the ability to distinguish 
brachytherapy seeds in patients using 3D ultrasound images, 
we performed a 3D scan on a patient who has undergone a 
brachytherapy procedure. Figure 3 shows three views of the 
prostate in which the 3D image has been cut in different 
planes to reveal the seeds. The 3D ultrasound images show 
that all the seeds are difficult to distinguish, and that improve- 
ments in the echogenicity must be achieved before all the 
seeds could be reliably identified. 

Conclusion 
Our 3D ultrasound imaging system for imaging the prostate 
can be interfaced to any conventional ultrasound machine, 
and can accommodate side-firing transrectal ultrasound 
transducers. After acquiring a series of 2D ultrasound im- 
ages, a 3D image is reconstructed. The 3D image is available 
to the physician, allowing the prostate to be viewed interac- 
tively in multiple simultaneous planes, allowing better visu- 
alization of its internal architecture. This approach allows 
the physician to record and view the whole prostate in suc- 
cessive examinations, making 3D TRUS well-suited to per- 
forming prospective or follow-up studies. Our results 
indicate that 3D ultrasound imaging of the prostate has great 
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potential as a tool for 
of prostate disease. 
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