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SUMMARY 

 
This summer I conducted vast research on Image Processing. I started out 

learning about Face Detection, the algorithms behind it and its significance in society.  
 I researched detecting other features such as edges based on different limitations, 
the most common methods for edge detection and the importance of edge detection for 
the processing of images. 
 Discovering the world of Image Processing emphasized how significant it is for 
the advancement of TELEHEALTH. Medical Imaging has evolved over the last few 
decades and it will keep advancing as long as the technology behind Image Processing is 
improved.  
 I came across various Open Source Codes which were a great help, and learnt a 
whole new vocabulary which I have documented in this report. 
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NOTE :- THIS REFERENCE ON IMAGES AND PALETTES HAS BEEN 
DIRECTLY EXTRACTED FROM THE WEBSITE BELOW. 
 
 
 
http://hdf.ncsa.uiuc.edu/hdf-java-
html/hdfview/UsersGuide/ug06imageview.html#ug06histogram 
 

Chapter 6: Image Viewer 
Image Viewer is a graphical window to display HDF images. HDFView is a simple 
image viewer for HDF4/5 and has very limited function of processing image.  

An HDF4 image is raster image of 8-bit pixels with and indexed RGB color table, or a 
24-bit true color image. HDF4 library provides image APIs to access image data and 
color table.  

An HDF5 image is a dataset that confirms the HDF5 Image Specification. HDFView 
supports two types of images: indexed and true color. Both indexed image and true color 
image have predefined attributes and data layout according to the HDF5 image 
specification. For more details about HDF5 image, see the HDF5 Image Specification.  

• 6.1 Display a 2D or 3D Image  
• 6.2 Zoom/Flip/Contour Image  
• 6.3 View and Modify Image Palette/Values  
• 6.4 Show Histogram of Pixel Values  
• 6.5 Import JPEG Image to HDF4/5  
• 6.6 Save HDF Image to JPEG File  

 

6.1 Display a 2D or 3D Image 
HDFView displays HDF4 raster image or HDF5 datasets that follow the HDF5 Image 
and Palette Specification for indexed images with a 8-bit standard RGB color model 
palette or three-dimensional true color images. Other image formats supported by the 
Image and Palette Specification are not supported by this tool.  

6.1.1 Indexed Image (8-bit)  

An indexed image is one of the following:  
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• An HDF4 RI8 image  
• An HDF5 dataset that conforms to the HDF5 Image specification, and is a 

"IMAGE_SUBCLASS=IMAGE_INDEXED"  
• An SDS or HDF5 dataset with data that can be interpreted as an image  

The dataset is displayed as a Java image using IndexColorModel. The dataset is 
converted to a raster image using the first palette specified by the PALETTE attribute, or 
the default palette for HDF4. Multiple user defined palettes (i.e., the PALETTE attribute 
may be a list) are not supported in version 1.0.  

The dataset of an indexed image holds the values of indices of the color lookup table 
(palette). The dataset is converted into image pixels by looking up the color table. The 
following figure is an example of mapping dataset values into pixels.  

 
Mapping of Dataset Values to Image Pixels 

For a two dimensional indexed image HDFView assumes that the width of the image is 
the size of second dimension and the height of the image is the first dimension, i.e. 
dim[0]=height and dim[1]=width.  

Although HDFView displays the entire image by the order of (dim[0], dim[1], 
dim[2])=(depth, height, width) by default, you can always change the order and select a 
subset for display as discussed in Chpater 5.  
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HDFView also displays a three dimensional array as an array of 2D images arranged 
along the third dimension, i.e. dim[0]=depth, dim[1]=height and dim[2]=width. You can 
flip back and forth to look at images at different position of the depth dimension. For 
instance, if the dataset is 20 x 400 x 600 (dim[0]=20, dim[1]=400, and dim[2]=600), 
HDFView will display it as 20 images each with the size of 600 x 400 (width is 600, 
height is 400). However, A three-dimension image of [1][height][width] or 
[height][width][1] is treated as a two-dimension indexed image of [height][width].  

A 2D or 3D SDS or HDF5 dataset with integer or float data can be displayed as an 
indexed image using the "Open As" selection from the Object menu. Since the dataset 
does not have a palette, a default palette is used. The palette is chosen from the "Select 
Palette" menu in the "Dataset Selection" window. The predefined palettes include:  

• gray  
• rainbow  
• nature  
• wave  

The default is "gray", a gray scale.  

6.1.2 True Color Image  

In the case of an image with more than one component per pixel (e.g., Red, Green, and 
Blue), the data may be arranged in one of two ways. HDFView only supports three color 
components: red, green and blue.  

Following HDF4 terminology, the data may be interlaced by pixel or by plane. For an 
HDF5 Image dataset the interlace should be indicated by the INTERLACE_MODE 
attribute. In both cases, the dataset will have a dataspace with three dimensions, height, 
width, and components. For pixel interlace the data is arranged by the order of 
[height][width][pixel components]. For plane interlace the data is arranged by the order 
[pixel components][height][width].  

The translation from pixel values to color components for display or processing purposes 
is a one-to-one correspondence of data values to components. Data of RGB color 
components is converted into byte data, which is packed into single int pixel. The Java 
Image is created with a DirectColorModel, with masks to define packed samples. This 
color model is similar to an X11 TrueColor visual. The default RGB ColorModel 
specified with the following parameters:  

 Number of bits:        32 
 Red mask:              0x00ff0000 
 Green mask:            0x0000ff00 
 Blue mask:             0x000000ff 
 Alpha mask:            0xff000000 
 Color space:           sRGB 
 isAlphaPremultiplied:  False 
 Transparency:          Transparency.TRANSLUCENT 



Hassana O.O                                                                                           REU Final Report 

 8

 transferType:          DataBuffer.TYPE_INT 
The following figure shows examples of true color images. The image on the left is pixel 
interleaving with dimensions of [149][227][3]. The image on the right is plane 
interleaving with dimensions of [3][149][227].  

 
True Color Image Displayed in the Image View 

6.2 Zoom/Flip/Contour Image 
HDFView supports only limited image manipulation such as zooming, flipping and 
contour. You can zoom in and out of an image. The minimum zoom factor is 1/8 
(reduced to 1/8 the size) and the maximum is 8 (magnified to 8 times the size). Reduction 
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(zoom out) is done by sampling pixels, such as a 1/2 size image is created by selecting 
every second pixel. Magnification (zoom in) is done by replicating pixels.  

You can also flip an image horizontally or verticaly. Flipping an image will change the 
coordinates of the image. This can be used to adjust images that may have been created 
with different origins that the defaults.  

The "contour" creates a contour plot of the pixel values. The contour can have from three 
to nine contour levels. Level three has less details of contour and level nine has more 
details of the contour. Repeated contour operation shows the accumulated effect of 
contouring. For example, if you do contouring with level 3 and then do contouring 
with level 4 on the same image, the final image shows the the effect of contouring 
with level 4 of the contour image with level 3.  

The following shows an contour image of level nine.  
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Contour Image 

6.3 View and Modify Image Palette/Values 
A palette is the means by which color is applied to an image and is also referred to as a 
color lookup table. It is a table in which every row contains the numerical representation 
of a particular color. In the example of an 8-bit standard RGB color model palette, this 
numerical representation of a color is presented as a triplet specifying the intensity of red, 
green, and blue components that make up each color.  
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Although the HDF5 palette specification allows for variable color length, different look-
up methods and color models beyond RGB, HDFView only supports the indexed RGB 
color model of 256 colors. Clicking the palette icon from the tool bar or selecting the 
palette command from the image menu, you can also see the red, green and blue 
components of the color table are ploted in a line plot.  

 
Image Palette (256 Colors) 

To view pixel values of each individual point, check the "Show value" item in the 
"Image" menu. When you move the mouse over the image, the pixel values of the mouse 
point are shown at the bottom of the image.  

You can modify the values of color table. Select the color (red, green or blue) in the 
palette view and drag line of selected color. The value of selected color changes as you 
move the color line. In the following figure, the image on the left is the orginal image and 
the image on the right is the image with modified color table.  
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Modified Image Palette (256 Colors) 

6.4 Show Histogram of Pixel Values 
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The frequency of pixel values of a selected area or the whole image can be displayed in a 
histogram chart. The horizontal axis of the histogram chart is the the 256 pixel values. 
The vertical axis shows the frequency of the pixel values.  

 
Histogram of Pixel Values 

6.5 Import JPEG Image to HDF4/5 
Using HDFView, you can convert an JPEG image into HDF4 or HDF5 image. Selec the 
"Import JPEG To" command in the file menu or the "JPEG To" command in the tools 
menu, a popup window will ask you to choose an JPEG image file to convert. Image is 
converted into 24-bit HDF4 or HDF5 image. The current conversion does not support 
image with indexed color model or image with less than two color components. The 
image data is saved as 8-bit unsigned integer regardless the data type of the original 
image.  
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OPEN CV, OPEN SOURCE COMPUTER VISION LIBRARY 
 
Open CV is a cross platform, middle- to – high API (Application Programming Interface) 
that consists of hundreds of C functions. 
 
NOTE: THIS REFERENCE HAS BEEN EXTRACTED FROM THE SOURCE 
BELOW 
 
C:\Program Files\OpenCV\docs\index.htm 
C:\Program Files\OpenCV\docs\ref\opencvref_cv.htm 
 

Gradients, Edges and Corners 

 

Sobel 

Calculates first, second, third or mixed image derivatives using extended Sobel operator 

void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int 
aperture_size=3 ); 
src  

Source image.  
dst  

Destination image.  
xorder  

Order of the derivative x .  
yorder  

Order of the derivative y .  
aperture_size  

Size of the extended Sobel kernel, must be 1, 3, 5 or 7. In all cases except 1, 
aperture_size ×aperture_size separable kernel will be used to calculate the 
derivative. For aperture_size=1 3x1 or 1x3 kernel is used (Gaussian smoothing 
is not done). There is also special value CV_SCHARR (=-1) that corresponds to 3x3 
Scharr filter that may give more accurate results than 3x3 Sobel. Scharr aperture 
is:  
| -3 0  3| 
|-10 0 10| 
| -3 0  3| 
for x-derivative or transposed for y-derivative.  

The function cvSobel calculates the image derivative by convolving the image with the 
appropriate kernel: 

dst(x,y) = dxorder+yodersrc/dxxorder•dyyorder |(x,y) 
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The Sobel operators combine Gaussian smoothing and differentiation so the result is 
more or less robust to the noise. Most often, the function is called with (xorder=1, 
yorder=0, aperture_size=3) or (xorder=0, yorder=1, aperture_size=3) to calculate first x- 
or y- image derivative. The first case corresponds to  
  |-1  0  1| 
  |-2  0  2| 
  |-1  0  1| 

kernel and the second one corresponds to 

  |-1 -2 -1| 
  | 0  0  0| 
  | 1  2  1| 
or 
  | 1  2  1| 
  | 0  0  0| 
  |-1 -2 -1| 
kernel, depending on the image origin (origin field of IplImage structure). No scaling 
is done, so the destination image usually has larger by absolute value numbers than the 
source image. To avoid overflow, the function requires 16-bit destination image if the 
source image is 8-bit. The result can be converted back to 8-bit using cvConvertScale or 
cvConvertScaleAbs functions. Besides 8-bit images the function can process 32-bit 
floating-point images. Both source and destination must be single-channel images of 
equal size or ROI size.  

 

Laplace 

Calculates Laplacian of the image 

void cvLaplace( const CvArr* src, CvArr* dst, int aperture_size=3 ); 
src  

Source image.  
dst  

Destination image.  
aperture_size  

Aperture size (it has the same meaning as in cvSobel).  

The function cvLaplace calculates Laplacian of the source image by summing second x- 
and y- derivatives calculated using Sobel operator: 

dst(x,y) = d2src/dx2 + d2src/dy2 

Specifying aperture_size=1 gives the fastest variant that is equal to convolving the 
image with the following kernel: 

|0  1  0| 
|1 -4  1| 
|0  1  0| 
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Similar to cvSobel function, no scaling is done and the same combinations of input and 
output formats are supported.  

 

Canny 

Implements Canny algorithm for edge detection 

void cvCanny( const CvArr* image, CvArr* edges, double threshold1, 
              double threshold2, int aperture_size=3 ); 
image  

Input image.  
edges  

Image to store the edges found by the function.  
threshold1  

The first threshold.  
threshold2  

The second threshold.  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel).  

The function cvCanny finds the edges on the input image image and marks them in the 
output image edges using the Canny algorithm. The smallest of threshold1 and 
threshold2 is used for edge linking, the largest - to find initial segments of strong edges. 

 

PreCornerDetect 

Calculates feature map for corner detection 

void cvPreCornerDetect( const CvArr* image, CvArr* corners, int 
aperture_size=3 ); 
image  

Input image.  
corners  

Image to store the corner candidates.  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel).  

The function cvPreCornerDetect calculates the function Dx
2Dyy+Dy

2Dxx - 2DxDyDxy 
where D? denotes one of the first image derivatives and D?? denotes a second image 
derivative. The corners can be found as local maximums of the function: 

// assuming that the image is floating-point 
IplImage* corners = cvCloneImage(image); 
IplImage* dilated_corners = cvCloneImage(image); 
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IplImage* corner_mask = cvCreateImage( cvGetSize(image), 8, 1 ); 
cvPreCornerDetect( image, corners, 3 ); 
cvDilate( corners, dilated_corners, 0, 1 ); 
cvSubS( corners, dilated_corners, corners ); 
cvCmpS( corners, 0, corner_mask, CV_CMP_GE ); 
cvReleaseImage( &corners ); 
cvReleaseImage( &dilated_corners ); 

 

CornerEigenValsAndVecs 

Calculates eigenvalues and eigenvectors of image blocks for corner detection 

void cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv, 
                               int block_size, int aperture_size=3 ); 
image  

Input image.  
eigenvv  

Image to store the results. It must be 6 times wider than the input image.  
block_size  

Neighborhood size (see discussion).  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel).  

For every pixel the function cvCornerEigenValsAndVecs considers block_size × 
block_size neigborhood S(p). It calcualtes covariation matrix of derivatives over the 
neigborhood as: 

    | sumS(p)(dI/dx)2   sumS(p)(dI/dx•dI/dy)| 
M = |                                 | 
    | sumS(p)(dI/dx•dI/dy)  sumS(p)(dI/dy)2 | 

After that it finds eigenvectors and eigenvalues of the matrix and stores them into 
destination image in form (λ1, λ2, x1, y1, x2, y2), where 
λ1, λ2 - eigenvalues of M; not sorted 
(x1, y1) - eigenvector corresponding to λ1 
(x2, y2) - eigenvector corresponding to λ2 

 

CornerMinEigenVal 

Calculates minimal eigenvalue of gradient matrices for corner detection 

void cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval, int 
block_size, int aperture_size=3 ); 
image  

Input image.  
eigenval  



Hassana O.O                                                                                           REU Final Report 

 18

Image to store the minimal eigen values. Should have the same size as image  
block_size  

Neighborhood size (see discussion of cvCornerEigenValsAndVecs).  
aperture_size  

Aperture parameter for Sobel operator (see cvSobel). format. In the case of 
floating-point input format this parameter is the number of the fixed float filter 
used for differencing.  

The function cvCornerMinEigenVal is similar to cvCornerEigenValsAndVecs but it 
calculates and stores only the minimal eigen value of derivative covariation matrix for 
every pixel, i.e. min(λ1, λ2) in terms of the previous function.  

 

FindCornerSubPix 

Refines corner locations 

void cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners, 
                         int count, CvSize win, CvSize zero_zone, 
                         CvTermCriteria criteria ); 
image  

Input image.  
corners  

Initial coordinates of the input corners and refined coordinates on output.  
count  

Number of corners.  
win  

Half sizes of the search window. For example, if win=(5,5) then 5*2+1 × 5*2+1 = 
11 × 11 search window is used.  

zero_zone  
Half size of the dead region in the middle of the search zone over which the 
summation in formulae below is not done. It is used sometimes to avoid possible 
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there 
is no such size.  

criteria  
Criteria for termination of the iterative process of corner refinement. That is, the 
process of corner position refinement stops either after certain number of iteration 
or when a required accuracy is achieved. The criteria may specify either of or 
both the maximum number of iteration and the required accuracy.  

The function cvFindCornerSubPix iterates to find the sub-pixel accurate location of 
corners, or radial saddle points, as shown in on the picture below. 
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Sub-pixel accurate corner locator is based on the observation that every vector from the 
center q to a point p located within a neighborhood of q is orthogonal to the image 
gradient at p subject to image and measurement noise. Consider the expression:  

εi=DIpiT•(q-pi) 
where DIpi is the image gradient at the one of the points pi in a neighborhood of q. The 
value of q is to be found such that εi is minimized. A system of equations may be set up 
with εi' set to zero:  
sumi(DIpi•DIpiT)•q - sumi(DIpi•DIpiT•pi) = 0 

where the gradients are summed within a neighborhood ("search window") of q. Calling 
the first gradient term G and the second gradient term b gives: 

q=G-1•b 

The algorithm sets the center of the neighborhood window at this new center q and then 
iterates until the center keeps within a set threshold.  

 

GoodFeaturesToTrack 

Determines strong corners on image 

void cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image, 
CvArr* temp_image, 
                            CvPoint2D32f* corners, int* corner_count, 
                            double quality_level, double min_distance, 
                            const CvArr* mask=NULL ); 
image  

The source 8-bit or floating-point 32-bit, single-channel image.  
eig_image  

Temporary floating-point 32-bit image of the same size as image.  
temp_image  

Another temporary image of the same size and same format as eig_image.  
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corners  
Output parameter. Detected corners.  

corner_count  
Output parameter. Number of detected corners.  

quality_level  
Multiplier for the maxmin eigenvalue; specifies minimal accepted quality of 
image corners.  

min_distance  
Limit, specifying minimum possible distance between returned corners; Euclidian 
distance is used.  

mask  
Region of interest. The function selects points either in the specified region or in 
the whole image if the mask is NULL.  

The function cvGoodFeaturesToTrack finds corners with big eigenvalues in the image. 
The function first calculates the minimal eigenvalue for every source image pixel using 
cvCornerMinEigenVal function and stores them in eig_image. Then it performs non-
maxima suppression (only local maxima in 3x3 neighborhood remain). The next step is 
rejecting the corners with the minimal eigenvalue less than 
quality_level•max(eig_image(x,y)). Finally, the function ensures that all the corners 
found are distanced enough from one another by considering the corners (the most 
strongest corners are considered first) and checking that the distance between the newly 
considered feature and the features considered earlier is larger than min_distance. So, 
the function removes the features than are too close to the stronger features. 

 
 
 

Filters and Color Conversion 

 

Smooth 

Smooths the image in one of several ways 

void cvSmooth( const CvArr* src, CvArr* dst, 
               int smoothtype=CV_GAUSSIAN, 
               int param1=3, int param2=0, double param3=0 ); 
src  

The source image.  
dst  

The destination image.  
smoothtype  

Type of the smoothing:  



Hassana O.O                                                                                           REU Final Report 

 21

• CV_BLUR_NO_SCALE (simple blur with no scaling) - summation over a 
pixel param1×param2 neighborhood. If the neighborhood size may vary, 
one may precompute integral image with cvIntegral function.  

• CV_BLUR (simple blur) - summation over a pixel param1×param2 
neighborhood with subsequent scaling by 1/(param1•param2).  

• CV_GAUSSIAN (gaussian blur) - convolving image with 
param1×param2 Gaussian kernel.  

• CV_MEDIAN (median blur) - finding median of param1×param1 
neighborhood (i.e. the neighborhood is square).  

• CV_BILATERAL (bilateral filter) - applying bilateral 3x3 filtering with 
color sigma=param1 and space sigma=param2. Information about bilateral 
filtering can be found at 
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilat
eral_Filtering.html  

param1  
The first parameter of smoothing operation.  

param2  
The second parameter of smoothing operation. In case of simple scaled/non-
scaled and Gaussian blur if param2 is zero, it is set to param1.  

param3  
In case of Gaussian parameter this parameter may specify Gaussian sigma 
(standard deviation). If it is zero, it is calculated from the kernel size: 
              sigma = (n/2 - 1)*0.3 + 0.8, where n=param1 for 
horizontal kernel, 
                                                 n=param2 for 
vertical kernel. 
               
Using standard sigma for small kernels (3×3 to 7×7) gives better speed. If param3 
is not zero, while param1 and param2 are zeros, the kernel size is calculated from 
the sigma (to provide accurate enough operation).  

The function cvSmooth smooths image using one of several methods. Every of the 
methods has some features and restrictions listed below 

Blur with no scaling works with single-channel images only and supports accumulation 
of 8-bit to 16-bit format (similar to cvSobel and cvLaplace) and 32-bit floating point to 
32-bit floating-point format. 

Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point 
images. These two methods can process images in-place. 

Median and bilateral filters work with 1- or 3-channel 8-bit images and can not process 
images in-place. 
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Filter2D 

Convolves the image with the kernel 

void cvFilter2D( const CvArr* src, CvArr* dst, 
                 const CvMat* kernel, 
                 CvPoint anchor=cvPoint(-1,-1)); 
#define cvConvolve2D cvFilter2D 
src  

The source image.  
dst  

The destination image.  
kernel  

Convolution kernel, single-channel floating point matrix. If you want to apply 
different kernels to different channels, split the image using cvSplit into separate 
color planes and process them individually.  

anchor  
The anchor of the kernel that indicates the relative position of a filtered point 
within the kernel. The anchor shoud lie within the kernel. The special default 
value (-1,-1) means that it is at the kernel center.  

The function cvFilter2D applies arbitrary linear filter to the image. In-place operation is 
supported. When the aperture is partially outside the image, the function interpolates 
outlier pixel values from the nearest pixels that is inside the image.  

 

Integral 

Calculates integral images 

void cvIntegral( const CvArr* image, CvArr* sum, CvArr* sqsum=NULL, 
CvArr* tilted_sum=NULL ); 
image  

The source image, W×H, single-channel, 8-bit, or floating-point (32f or 64f).  
sum  

The integral image, W+1×H+1, single-channel, 32-bit integer or double precision 
floating-point (64f).  

sqsum  
The integral image for squared pixel values, W+1×H+1, single-channel, double 
precision floating-point (64f).  

tilted_sum  
The integral for the image rotated by 45 degrees, W+1×H+1, single-channel, the 
same data type as sum.  

The function cvIntegral calculates one or more integral images for the source image as 
following: 
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sum(X,Y)=sumx<X,y<Yimage(x,y) 
 
sqsum(X,Y)=sumx<X,y<Yimage(x,y)2 
 
tilted_sum(X,Y)=sumy<Y,abs(x-X)<yimage(x,y) 

Using these integral images, one may calculate sum, mean, standard deviation over 
arbitrary pixel up-right or rotated rectangle in O(1), for example: 

sumx1<=x<x2,y1<=y<y2image(x,y)=sum(x2,y2)-sum(x1,y2)-sum(x2,y1)+sum(x1,x1) 

It makes possible to do a fast blurring or fast block correlation with variable window size 
etc.  

 

CvtColor 

Converts image from one color space to another 

void cvCvtColor( const CvArr* src, CvArr* dst, int code ); 
src  

The source 8-bit or floating-point image.  
dst  

The destination 8-bit or floating-point image.  
code  

Color conversion operation that can be specifed using 
CV_<src_color_space>2<dst_color_space> constants (see below).  

The function cvCvtColor converts input image from one color space to another. The 
function ignores colorModel and channelSeq fields of IplImage header, so the source 
image color space should be specified correctly (including order of the channels in case 
of RGB space, e.g. BGR means 24-bit format with B0 G0 R0 B1 G1 R1 ... layout, whereas 
RGB means 24-format with R0 G0 B0 R1 G1 B1 ... layout). The function can do the 
following transformations:  

• Transformations within RGB space like adding/removing alpha channel, 
reversing the channel order, conversion to/from 16-bit RGB color (Rx5:Gx6:Rx5) 
color, 15-bit RGB color as well as conversion to/from grayscale using:  

• RGB[A]->Gray: Y=0.212671*R + 0.715160*G + 0.072169*B + 0*A 
• Gray->RGB[A]: R=Y G=Y B=Y A=0 

All the possible combinations of input and output format are allowed here.  

• RGB<=>XYZ (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR, 
CV_XYZ2RGB):  

• |X|   |0.412411  0.357585  0.180454| |R| 
• |Y| = |0.212649  0.715169  0.072182|*|G| 
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• |Z|   |0.019332  0.119195  0.950390| |B| 
•  
• |R|   | 3.240479  -1.53715  -0.498535| |X| 
• |G| = |-0.969256   1.875991  0.041556|*|Y| 
• |B|   | 0.055648  -0.204043  1.057311| |Z| 
• RGB<=>YCrCb (CV_BGR2YCrCb, CV_RGB2YCrCb, CV_YCrCb2BGR, 

CV_YCrCb2RGB)  
• Y=0.299*R + 0.587*G + 0.114*B 
• Cr=(R-Y)*0.713 + 128 
• Cb=(B-Y)*0.564 + 128 
•  
• R=Y + 1.403*(Cr - 128) 
• G=Y - 0.344*(Cr - 128) - 0.714*(Cb - 128) 
• B=Y + 1.773*(Cb - 128) 
• RGB=>HSV (CV_BGR2HSV,CV_RGB2HSV)  
• V=max(R,G,B) 
• S=(V-min(R,G,B))*255/V   if V!=0, 0 otherwise 
•  
•        (G - B)*60/S,  if V=R 
• H= 180+(B - R)*60/S,  if V=G 
•    240+(R - G)*60/S,  if V=B 
•  
• if H<0 then H=H+360 

The hue values calcualted using the above formulae vary from 0° to 360° so they 
are divided by 2 to fit into 8 bits.  

• RGB=>Lab (CV_BGR2Lab, CV_RGB2Lab)  
• |X|   |0.433910  0.376220  0.189860| |R/255| 
• |Y| = |0.212649  0.715169  0.072182|*|G/255| 
• |Z|   |0.017756  0.109478  0.872915| |B/255| 
•  
• L = 116*Y1/3      for Y>0.008856 
• L = 903.3*Y      for Y<=0.008856 
•  
• a = 500*(f(X)-f(Y)) 
• b = 200*(f(Y)-f(Z)) 
• where f(t)=t1/3              for t>0.008856 
•       f(t)=7.787*t+16/116   for t<=0.008856 

The above formulae have been taken from 
http://www.cica.indiana.edu/cica/faq/color_spaces/color.spaces.html  

• Bayer=>RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR, 
CV_BayerGR2BGR, 
CV_BayerBG2RGB, CV_BayerRG2BGR, CV_BayerGB2RGB, 
CV_BayerGR2BGR, 
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CV_BayerRG2RGB, CV_BayerBG2BGR, CV_BayerGR2RGB, 
CV_BayerGB2BGR)  

Bayer pattern is widely used in CCD and CMOS cameras. It allows to get color 
picture out of a single plane where R,G and B pixels (sensors of a particular 
component) are interleaved like this: 

R G R G R 

G B G B G 

R G R G R 

G B G B G 

R G R G R 

G B G B G 

The output RGB components of a pixel are interpolated from 1, 2 or 4 neighbors 
of the pixel having the same color. There are several modifications of the above 
pattern that can be achieved by shifting the pattern one pixel left and/or one pixel 
up. The two letters C1 and C2 in the conversion constants 
CV_BayerC1C22{BGR|RGB} indicate the particular pattern type - these are 
components from the second row, second and third columns, respectively. For 
example, the above pattern has very popular "BG" type. 

 

Threshold 

Applies fixed-level threshold to array elements 

void cvThreshold( const CvArr* src, CvArr* dst, double threshold, 
                  double max_value, int threshold_type ); 
src  

Source array (single-channel, 8-bit of 32-bit floating point).  
dst  

Destination array; must be either the same type as src or 8-bit.  
threshold  

Threshold value.  
max_value  

Maximum value to use with CV_THRESH_BINARY and CV_THRESH_BINARY_INV 
thresholding types.  

threshold_type  
Thresholding type (see the discussion)  
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The function cvThreshold applies fixed-level thresholding to single-channel array. The 
function is typically used to get bi-level (binary) image out of grayscale image (cvCmpS 
could be also used for this purpose) or for removing a noise, i.e. filtering out pixels with 
too small or too large values. There are several types of thresholding the function 
supports that are determined by threshold_type: 

threshold_type=CV_THRESH_BINARY: 
dst(x,y) = max_value, if src(x,y)>threshold 
           0, otherwise 
 
threshold_type=CV_THRESH_BINARY_INV: 
dst(x,y) = 0, if src(x,y)>threshold 
           max_value, otherwise 
 
threshold_type=CV_THRESH_TRUNC: 
dst(x,y) = threshold, if src(x,y)>threshold 
           src(x,y), otherwise 
 
threshold_type=CV_THRESH_TOZERO: 
dst(x,y) = src(x,y), if (x,y)>threshold 
           0, otherwise 
 
threshold_type=CV_THRESH_TOZERO_INV: 
dst(x,y) = 0, if src(x,y)>threshold 
           src(x,y), otherwise 

And this is the visual description of thresholding types: 
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AdaptiveThreshold 

Applies adaptive threshold to array 

void cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double 
max_value, 
                          int 
adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, 



Hassana O.O                                                                                           REU Final Report 

 28

                          int threshold_type=CV_THRESH_BINARY, 
                          int block_size=3, double param1=5 ); 
src  

Source image.  
dst  

Destination image.  
max_value  

Maximum value that is used with CV_THRESH_BINARY and 
CV_THRESH_BINARY_INV.  

adaptive_method  
Adaptive thresholding algorithm to use: CV_ADAPTIVE_THRESH_MEAN_C or 
CV_ADAPTIVE_THRESH_GAUSSIAN_C (see the discussion).  

threshold_type  
Thresholding type; must be one of  

• CV_THRESH_BINARY,  
• CV_THRESH_BINARY_INV  

block_size  
The size of a pixel neighborhood that is used to calculate a threshold value for the 
pixel: 3, 5, 7, ...  

param1  
The method-dependent parameter. For the methods 
CV_ADAPTIVE_THRESH_MEAN_C and CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a 
constant subtracted from mean or weighted mean (see the discussion), though it 
may be negative.  

The function cvAdaptiveThreshold transforms grayscale image to binary image 
according to the formulae: 

threshold_type=CV_THRESH_BINARY: 
dst(x,y) = max_value, if src(x,y)>T(x,y) 
           0, otherwise 
 
threshold_type=CV_THRESH_BINARY_INV: 
dst(x,y) = 0, if src(x,y)>T(x,y) 
           max_value, otherwise 

where TI is a threshold calculated individually for each pixel. 

For the method CV_ADAPTIVE_THRESH_MEAN_C it is a mean of block_size × 
block_size pixel neighborhood, subtracted by param1. 

For the method CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a weighted sum (gaussian) of 
block_size × block_size pixel neighborhood, subtracted by param1. 
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Why is Face Detection Important? 
 
Face detection is important in our technologically advanced world because it aids in 
security surveillances and it is also man-power effective and time- effective. 
 
In a surveillance tape or live- stream feed, a face recognition software can be used to find 
a particular face in a crowd. 
 
A face detecting software can be used to scan the surface of a pool where young children 
are swimming. If for some reason a child goes under, an alarm will go off because it 
wouldn’t be able to find a face in the image, thereby alerting a rescue party. 
 
The Face detection technique can also be applied to different situations such as motion 
tracking, whereby a person walking in a parking lot of moving cars can be detected. Or as 
a security measure whereby a person walking about in a restricted area would be easily 
detected. 
 
 
 
 
 
 
 
 
NOTE: THIS IS A REFERENCE EXTRACTED FROM THE WEBSITE BELOW 
 
http://www.geocities.com/jaykapur/face.html 
 
 

Face Detection in Color Images 
 

 
 

Jay P. Kapur 
EE499 Capstone Design Project Spring 1997 

University of Washington Department of Electrical Engineering 
 

Abstract 
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This paper presents a technique for automatically detecting human faces in digital color 
images. The system relies on a two step process which first detects regions which are 
likely to contain human skin in the color image and then extracts information from these 
regions which might indicate the location of a face in the image. The skin detection is 
performed using a skin filter which relies on color and texture information. The face 
detection is performed on a grayscale image containing only the detected skin areas. A 
combination of threshholding and mathematical morphology are used to extract object 
features that would indicate the presence of a face. The face detection process works 
predictably and fairly reliably, as test results show.  

 

  

I. Introduction 

Designing a system for automatic image content recognition is a non-trivial task that has 
been studied for a variety of applications. Computer recognition of specific objects in 
digital images has been put to use in manufacturing industries, intelligence and 
surveillance, and image database cataloging to name a few. In this project, a prototype 
algorithm for automating the detection of human faces in digital photographs was 
developed and can serve as an introduction for future work in detecting people in images. 

  

Several systems designed for the purpose of finding people or faces in images have 
already been proposed by numerous research groups. Some of these programs, such as 
the Rowley, Baluja, and Kanade system developed at Carnegie Mellon, rely on training 
of a neural network and computing distance measures between training sets to detect a 
face. Other software packages exist which can recognize facial features in pictures known 
to contain a human face somewhere in the image. This project focused on face detection 
in arbitrary color images and differs from the first type of system in that it relies on a 
combination of color and grayscale information. Additionally, it does not require the time 
consuming process of training a neural net or computing distance measures between 
every possible region in the image. The developed system also differs from those 
software packages that recognize facial features because, in this scenario, the task is to 
detect a facial region in an arbitrary image, and not to analyze images known to contain a 
face.  

  

The process for detection of faces in this project was based on a two-step approach. First, 
the image is filtered so that only regions likely to contain human skin are marked. This 
filter was designed using basic mathematical and image processing functions in 
MATLAB and was based on the skin filter designed for the Berkeley-Iowa Naked People 
Finder. Modifications to the filter algorithm were made to offer subjective improvement 
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to the output. The second stage involves taking the marked skin regions and removing the 
darkest and brightest regions from the map. The removed regions have been shown 
through empirical tests to correspond to those regions in faces which are usually the eyes 
and eyebrows, nostrils, and mouth. By performing several basic image analysis 
techniques, the regions with "holes" created by the threshholding can be considered likely 
to be faces. This second stage was a combination of Khoros visual programming and 
MATLAB functions. The entire system was entirely automated and required no user 
intervention save for indicating the correct file names to be processed at each stage. 
While not implemented in this project, a more advanced program could implement a third 
step to discriminate between hole sizes and spatial relationships to make an even more 
robust detection system. 

 

II. Skin Filter 

  

The skin filter is based on the Fleck and Forsyth algorithm with some modifications. For 
comparison, one might want to consult their report published on the Web at 
http://www.cs.uiowa.edu/~mfleck/vision-html/naked-skin.html. In this project, the filter was built in 
MATLAB. Several of the low level image processing functions are already built into the 
MATLAB environment and this project required time to be invested in building a 
working filter algorithm, not writing code for low level functions. A description of how 
the filter operates will be detailed in this section, and the skin filter function as written in 
MATLAB format is provided in Appendix A. 

 

Original RGB image 

  

The input color image should be in RGB format with color intensity values ranging from 
0 to 255. Due to restrictions on speed and performance, this project used images smaller 
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than 250x250 in area. The RGB matrices are "zeroed" to supposedly prevent desaturation 
when the image is converted from RGB color space to IRgBy color space. The smallest 
intensity value greater than 10 pixels from any edge in any of the three color planes is set 
as the zero-response of the image. This value is subtracted from all three color planes. 

  

The RGB image is transformed to log-opponent (IRgBy) values and from these values 
the texture amplitude, hue, and saturation are computed. The conversion from RGB to 
log-opponent is calculated according to a variation on the formula given by Fleck& 
amp;Forsyth: 

  

I= [L(R)+L(B)+L(G)]/3 

Rg = L(R)-L(G) 

By = L(B)-[L(G)+L(R)]/2 

  

The L(x) operation is defined as L(x)=105*log10(x+1). The Rg and By matrices are then 
filtered with a windowing median filter of with sides of length 4*SCALE. The SCALE 
value is calculated as being the closest integer value to (height+width)/320. The m edian 
filtering is the rate limiting step throughout the skin detection process, and could be 
improved by implementing an approximation of a windowing median filter as suggested 
by Fleck’s multi-ring operator. 

  

A texture amplitude map is used to find regions of low texture information. Skin in 
images tends to have very smooth texture and so one of the constraints on detecting skin 
regions is to select only those regions with little texture. The texture map is generated 
from the matrix I by the following steps: 

  

1. Median filter I with a window of length 8*SCALE on a side 

2. Subtract the filtered image from the original I matrix 

3. Take the absolute value of the difference and median filter the result with a window of 
length 12*SCALE on a side. 
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Texture Amplitude Map 

  

Hue and saturation are used to select those regions whose color matches that of skin. The 
conversion from log opponent to hue is hue = (atan2(Rg,By)), where the resulting value is 
in degrees. The conversion from log opponent to saturatio n is saturation = 
sqrt(Rg2+By2). Using constraints on texture amplitude, hue, and saturation, regions of 
skin can be marked.  

 

Hue Image 
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Saturation Image 

  

If a pixel falls into either of two ranges it is marked as being skin in a binary skin map 
array where 1 corresponds to the coordinates being a skin pixel in the original image and 
0 corresponds to a non-skin pixel. The allowed ranges are either : 

  

(1) texture<4.5, 120<HUE<saturation<60<>  

(2) texture<4.5, 150<HUE<saturation<80<>  

  

The skin map array can be considered as a black and white binary image with skin 
regions (value 1) appearing as white. The binary skin map regions are expanded using a 
dilation operator and a disc structuring element. This helps to enlarge the skin map 
regions to include skin/background border pixels, regions near hair or other features, or 
desaturated areas. The dilation adds 8-connected pixels to the edges of objects. In this 
implementation, the dilation was performed recursively five times for best results. The 
expanded map regions are then checked against a lenient constraint on hue and saturation 
values, independent of texture. If a point marked in the skin map corresponds to a pixel 
with 110<=hue<=180 and 0<=saturation<=130, the value remains 1 in the map. 
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Skin Map 

  

The skin filter is not perfect, either due to coding errors or improper constraints, because 
there is a tendency for highly saturated reds and yellows to be detected as skin. Often this 
causes problems in the face detection when a large red or yellow p atterned object is 
present in the image. See the results in Appendix B for several examples of the skin filter 
output and cases in which the skin filter marked highly saturated red and yellow as skin. 

  

III. Face Detection From Skin Regions 

  

The binary skin map and the original image together are used to detect faces in the image. 
The technique relies on threshholding the skin regions properly so that holes in face 
regions will appear at the eyebrows, eyes, mouth, or nose. Theoretically, all other regions 
of skin will have little or no features and no holes will be created except for at the desired 
facial features. This method seems to be an oversimplification of the problem, but with 
some additional constraints on hole sizes or spatial relationships, could prove to be a 
powerful, fast, and simple alternative to neural network processes. 

  

Detection of face regions was broken into two parts, the first using the Khoros visual 
programming application and the second part using a MATLAB program. The two 
Khoros workspaces are shown in Appendix A along with the MATLAB code. All of the 
functions used are standard image analysis techniques (hole filling algorithms, 
threshholding, connected components labeling, etc.) that should be straightforward, 
though perhaps tedious, to build in any programming language.  
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The first step is to ensure that the binary skin map is made up of solid regions (i.e. no 
holes). Closing holes in the skin map is important because later the program assumes that 
the only holes are those generated after the threshholding operation. A hole closing is 
performed on the skin map image with a 3x3 disc structuring element and then this image 
is multiplied by a grayscale conversion of the original image. The result is a grayscale 
intensity image showing only the parts of the image containing skin.  

  

Skin Map Multiplied by Grayscale Image 

  

To improve contrast, a histogram stretch is performed on the resulting grayscale image. 
This helps to make the dark and light regions fall into more predictable intensity ranges 
and compensates somewhat for effects of illumination in the image. The image can now 
be threshholded to remove the darkest and lightest pixels. Experimentation showed that 
an acceptable threshold was to set all pixels with values between 95 and 240 equal to 1 
and those pixels above and below the cutoff equal to 0. For most test images, this 
threshold work quite well. The binary image created by the threshold is then passed 
through a connected components labeling to generate a "positive" image showing distinct 
skin regions. 
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Positive Labeled Image 

  

A negative image is next generated that will show only holes as objects. Hole closing of 
the binary image generated by the threshold operation is performed with a 4x4 disc 
structuring element. The result is subtracted from the original binary image and the 
difference shows only hole objects. 

 

Negative ‘Hole’ Image 

  

The negative hole image and the positive labeled image are then used together to find 
which objects in the image might be faces. First those holes in the negative image which 
are only 1 pixel in size are removed because these tend to represent anomalous holes. An 
even better technique might be to remove all but the three largest hole objects from the 
negative image. The hole objects are expanded using a dilation and this binary image is 
then multiplied by the positive labeled image. The product is an image where only the 
pixels surrounding a hole are present. Because the positive image was labeled, the 
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program can easily determine which objects have holes, and which do not. A simple 
function computes which integers appear in the hole adjacency image and then generates 
an output image containing the labeled connected components that have this value. 

 

Face Objects 

  

Because this process relies only on finding holes in threshholded objects, there is a 
greater chance of finding faces regardless of the perspective. A drawback is that there is 
also a greater risk of detecting non-face objects. The test results show very good 
performance when a face occupies a large portion of the image, and reasonable 
performance on those images depicting people as part of a larger scene. To make the 
program more robust, detected face objects could be rejected if they don’t occupy a 
significant area in the image. Another drawback of this process is that images in which 
people appear partially clothed tend will result in a very large skin map. The result is 
often a labeling of the entire head, arms, and torso as a single object. Thus the face 
finding is an overestimate of potential skin objects. All things considered, this technique 
developed over a period of ten weeks shows promise and with some "intelligence" added 
to the algorithm, could generate very reliable results on a wide variety of images. 

Appendix A 
Matlab Code 
This code is used for the skin filter and the final face region detection. The Khoros 
workspaces are long gone, but it is easy enough to write Matlab code to do the same 
thing.  

skinfilt.m 
skinmap.m 
logopp.m 
face.m 
fscript.m 
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A picture is worth more than a thousand words. 
 
We have heard this expression countless times. A picture gives a much clearer impression 
of a situation or an object than numerous descriptions. Having an accurate visual 
perceptive of things has a high social, economic and technical value that is why image 
analysis (a.k.a. image understanding), image processing and computer vision plays a 
huge role in the research industry today. 
 
Digital image processing stems from two different application areas: 

1) Improvement of pictorial information for human interpretation 
2) Processing of image data for storage, transmission and representation of 

autonomous machine perception.  
 
What is Digital Image Processing? 
 

The field of digital image processing refers to processing digital images by means 
of a digital computer. A digital image composes of a finite number of elements which 
have a particular location and value and these elements are referred to as picture 
elements, image elements, pels and pixels. 
  
 Images are referred to more than just the projections generated by the visual band 
of the EM (electromagnetic) waves apparent to humans. Images generated from the entire 
band of the EM waves ranging from gamma to radio waves can be perceived by imaging 
machines. Some of these images include ultrasound, electron microscopy, and computer-
generated images.  
 
 There are 3 computerized processing levels:  
 

1) Low-level process: - is characterized by the fact that both the inputs and outputs 
are images. These involve primitive operations such as image preprocessing to 
reduce noise, contrast enhancement and image sharpening.  

2) Mid-level process: - is characterized by the fact that its inputs generally are 
images, but its outputs are attributes extracted from those images such as, edges, 
contours, and the identity of individual objects. Mid-level processing on images 
involves tasks such as segmentation (partitioning an image into regions or 
objects), description of those objects to reduce them to a form suitable for 
computer processing, and classification (recognition) of individual objects. 

3) High-level process: - involves trying deduce an ensemble of recognized objects, 
from image analysis to performing the cognitive function usually associated with 
vision. 
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Origins of Digital Image Processing  

 
In the early 1920’s the Bartlane cable picture transmission system was introduced, 

thereby reducing the transportation time for a picture from New York to England by 
days. Digital images were first applied in the newspaper industry when pictures were first 
set by submarine cable between London and New York, then the Bartlane cable was 
introduced reducing transmission time from three weeks to three hours.  

 
There were different phases in technology improvement; in 1921 the method used 

for receiving images through a coded tape by a telegraph printer was abandoned in favor 
of a technique based on photographic reproduction made from tapes perforated at the 
telegraph receiving terminal with evident improvement in both tonal quality and 
resolution.  
 
 
The history of digital image processing is intimately tied to the development of the digital 
computer. The first computers powerful enough to carry out meaningful image 
processing tasks appeared in the early 1960s. This was when there was significant 
development of the high-level programming languages COBOL (common business-
oriented language) and FORTRAN (formula translator) and the development of operating 
systems. The birth of digital image processing can be traced to the availability of 
advanced computers and the onset of the space program during that period. Work on 
using computer techniques for improving images from a space probe began at the Jet 
Propulsion Laboratory in Pasadena, California in 1964 when pictures of the moon 
transmitted by RANGER 7 were processed by a computer to correct various types of 
image distortion inherent in the on-board television camera.  
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Fields that Use Digital Image Processing 
 

In parallel with space applications, digital image processing techniques in the late 
1960s and early 1970s to be used in (1) medical imaging, (2) remote Earth resources 
observations and (3) astronomy. 

(1) Medical imaging-- The invention in the early 1970s of computerized axial 
tomography (CAT) is one of the most important events in the application of image 
processing in medical diagnosis. Tomography consists of algorithms that use the sensed 
data to construct an image that represents a slice through the object which compose a 
three-dimensional (3-D) version of the inside of the object.  

Tomography was invented independently by Sir Godfrey N. Hounsfield and 
Professor Allan M. Cormack, who shared the 1979 Nobel Prize in Medicine for their 
invention. X-rays were discovered in 1895 by Wilhelm Conrad Roentgen, for which he 
received the 1901 Nobel Prize in Physics. These two inventions, nearly 100 years apart 
led to some of the most active application areas of image processing today. 

Computer procedures are also used to enhance the contrast or code the intensity 
levels into color for easier interpretation of X-rays and other images used in industry, 
medicine, and the biological sciences.  

(2) Remote earth resources and observations-- Geographers use the same or 
similar techniques to study pollution patterns from aerial and satellite imagery. Image 
enhancement and restoration procedures are used to process degraded images of 
unrecoverable objects or experimental results too expensive to duplicate. In archaeology, 
image processing methods have successfully restored blurred pictures that were the only 
available records of rare artifacts lost or damaged after being photographed.  

 
In physics and other related fields, computer techniques routinely enhance images 

of experiments in areas such as high-energy plasmas and electron microscopy.  Similarly 
successful applications of image processing concepts can be found in astronomy, biology, 
nuclear medicine, law enforcement defense, and industrial applications. 

These examples illustrate processing results intended for human interpretation. 
The second major area of application of digital image processing techniques deals with 
machine perception. In this case interest focuses on procedures for extracting from an 
image, information in a form suitable for computer processing. Examples of the type of 
information used in machine perception are statistical moments, Fourier transform 
coefficients, and multidimensional distance measures. Typical problems in machine 
perception that routinely utilize image processing techniques are automatic character 
recognition, industrial machine vision for product assembly and inspection, military 
recognizance, automatic processing of fingerprints, screening of X-rays and blood 
samples, and machine processing of aerial and satellite imagery for weather prediction 
and environmental assessment.  
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Fundamental Steps in Digital Image Processing 
 
Image acquisition- is the first process which involves preprocessing such as scaling. 
 
Image enhancement- this is bringing out obscured detail or highlighting certain features 
of interest in an image. This technique deals with a number of mathematical functions 
such as the Fourier Transform. 
 
Image restoration- it improves the appearance of an image but is objective in the sense 
that this technique tends to be based on mathematical or probabilistic models of image 
degradation. 
 
Color image processing- this is used as a basis for extracting features of interest in an 
image. 
 
Wavelets- are the foundation for representing images in various degrees of resolution.  
 
Compression- deals with techniques for reducing the storage required to save an image, 
or the bandwidth required to transmit it. 
 
Morphological processing- deals with tools for extracting image components that are 
useful in the representation and description of shape. 
 
Segmentation- partitions an image into its constituent parts or objects. 
 
Representation and description- representation is necessary for transforming raw data into 
a form suitable for subsequent computer processing. Description, also known as feature 
selection, deals with extracting attributes that result in some quantitative information of 
interest. 
 
Recognition- assigns a label to an object based on its descriptors.              
 
Feature Extraction- this is an area of image processing which involves using algorithms 
to detect and isolate various desired portions of a digitized image or video stream. 
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Feature Extraction/Detection 
 
This is an area of image processing that uses algorithms to detect and isolate varius 
desired portions of a digitized image. 

 
 

Feature Extraction Techniques 
 Hough Transform- 
 
This identifies lines in an image as well as arbitrary shapes. The purpose of the transform 
is to determine which of these theoretical lines pass through most features in an image. 
The input to a Hough transform is usually one to which some kind of edge detection has 
been applied instead of a raw image.  
 
Each line is represented by two parameters, commonly called r and θ which represent the 
length and angle from the origin of a normal to the line in question. In other words, a line 
is said to be 90° from θ and r units away from the origin at its closest point. By 
calculating the value of r for every possible value of θ, a sinusoidal curve is created 
which is unique to that point. This representation of the two parameters is sometimes 
referred to as Hough space.  Thus the points to be transformed are likely to lie on an 
‘edge’ in the image. The transform itself is quantized into an arbitrary number of bins, 
each representing an approximate definition of a possible line. Each significant point (or 
feature) in the edge detected is said to vote for a set of bins corresponding to the lines that 
pass through it. By simply incrementing the value stored in each bin for every feature 
lying on that line, an array is built up which shows which lines fit most closely to the data 
in the image. 
 
Hough transform of curves, and Generalized Hough transform 
 
The transform described above applies to finding straight lines; a circle for instance can 
be transformed into a set of three parameters representing its center and radius, so that the 
Hough space becomes three dimensional. Arbitrary ellipses, curves and shapes expressed 
as a set of parameters can be found this way. For more complicated shapes, the 
Generalized Hough transform is used, which allows a feature to vote for particular 
position, orientation and/scaling or the shape using a predefined look-up table. 
 
Using Weighted Features 
 
The Hough transform accounts for uncertainty in the underlying detection of edges by 
allowing features to vote with varying weight. 
 
Hierarchical Hough Transform 
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A final enhancement that is sometimes effective is to perform a hierarchical set of Hough 
transform on the same image, using progressively smaller bins. If the image is first 
analyzed using a small number of bins, each representing a large range of potential lines, 
the most likely of these can then be analyzed in more detail. That is finding the bins with 
the highest count in one stage can be used to constrain the range of values searched in the 
text.  
 
 
Image Feature Detection based on Scale-Interaction Model 
 
This feature detector is responsive to short lines, line endings, corners and other sharp 
changes in curvature. Features are locations in an image that are perceptually interesting. 
Previous work on feature detection includes the use of grey level statistics and the 
detection of edges and corners. 
 Detecting edges and corners are particularly useful in analysis of aerial images of 
urban scenes, airport facilities, image to map matching, etc.  

Algorithms based on grey level statistics are applicable to a wider variety of 
images such as desert scenes and vegetation and images which don’t necessarily contain 
man made structures.  
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DICTIONARY 

 
 

Raster Image :- 
 An image that is composed of pixel patterns, also known as Bitmapped Image 
              
Pixel :- 
It is the smallest complete element of an Image. 
It is a picture element. The quality of an image depends on the number of pixels per inch 
that make up that image. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


