
Hassana O.O REU Final Report

 1

Summer Research Final Report

Project Title:

Image Processing

Name:

Hassana Ozigi-Otaru

Mentor:

Dr Hong Man

Department of Defense Telehealth Research Experience

Stevens Institute of Technology

May – August 2005

Hassana O.O REU Final Report

 2

Table of Contents

Table of contents __ 2-3

Summary __4

Reference Paper on Images and Color Palettes ______________________5-13

Computer Vision, Open CV Library _____________________________14-28

Why is Face Detection Important? __________________________________29

Reference Paper on Face Detection Techniques______________________30-38

What is Digital Image Processing?__________________________________39

History of Digital Image Processing ________________________________40

Significance of Digital Image Processing _____________________________41

Edge Detection __

Dictionary __45

Appendix: Weekly Reports

Week One __

Week Two ___

Week Three __

Week Four ___

Week Five ___

Week Six __

Week Seven __

Week Eight ___

Week Nine ___

Hassana O.O REU Final Report

 3

Week Ten __

Table of Contents… Cont.d

References ___

Workshop Presentation on Image Processing and Feature Detection

Dr Man’s Workshop Presentation on Image Processing

Hassana O.O REU Final Report

 4

SUMMARY

This summer I conducted vast research on Image Processing. I started out

learning about Face Detection, the algorithms behind it and its significance in society.
 I researched detecting other features such as edges based on different limitations,
the most common methods for edge detection and the importance of edge detection for
the processing of images.
 Discovering the world of Image Processing emphasized how significant it is for
the advancement of TELEHEALTH. Medical Imaging has evolved over the last few
decades and it will keep advancing as long as the technology behind Image Processing is
improved.
 I came across various Open Source Codes which were a great help, and learnt a
whole new vocabulary which I have documented in this report.

Hassana O.O REU Final Report

 5

NOTE :- THIS REFERENCE ON IMAGES AND PALETTES HAS BEEN
DIRECTLY EXTRACTED FROM THE WEBSITE BELOW.

http://hdf.ncsa.uiuc.edu/hdf-java-
html/hdfview/UsersGuide/ug06imageview.html#ug06histogram

Chapter 6: Image Viewer
Image Viewer is a graphical window to display HDF images. HDFView is a simple
image viewer for HDF4/5 and has very limited function of processing image.

An HDF4 image is raster image of 8-bit pixels with and indexed RGB color table, or a
24-bit true color image. HDF4 library provides image APIs to access image data and
color table.

An HDF5 image is a dataset that confirms the HDF5 Image Specification. HDFView
supports two types of images: indexed and true color. Both indexed image and true color
image have predefined attributes and data layout according to the HDF5 image
specification. For more details about HDF5 image, see the HDF5 Image Specification.

• 6.1 Display a 2D or 3D Image
• 6.2 Zoom/Flip/Contour Image
• 6.3 View and Modify Image Palette/Values
• 6.4 Show Histogram of Pixel Values
• 6.5 Import JPEG Image to HDF4/5
• 6.6 Save HDF Image to JPEG File

6.1 Display a 2D or 3D Image
HDFView displays HDF4 raster image or HDF5 datasets that follow the HDF5 Image
and Palette Specification for indexed images with a 8-bit standard RGB color model
palette or three-dimensional true color images. Other image formats supported by the
Image and Palette Specification are not supported by this tool.

6.1.1 Indexed Image (8-bit)

An indexed image is one of the following:

Hassana O.O REU Final Report

 6

• An HDF4 RI8 image
• An HDF5 dataset that conforms to the HDF5 Image specification, and is a

"IMAGE_SUBCLASS=IMAGE_INDEXED"
• An SDS or HDF5 dataset with data that can be interpreted as an image

The dataset is displayed as a Java image using IndexColorModel. The dataset is
converted to a raster image using the first palette specified by the PALETTE attribute, or
the default palette for HDF4. Multiple user defined palettes (i.e., the PALETTE attribute
may be a list) are not supported in version 1.0.

The dataset of an indexed image holds the values of indices of the color lookup table
(palette). The dataset is converted into image pixels by looking up the color table. The
following figure is an example of mapping dataset values into pixels.

Mapping of Dataset Values to Image Pixels

For a two dimensional indexed image HDFView assumes that the width of the image is
the size of second dimension and the height of the image is the first dimension, i.e.
dim[0]=height and dim[1]=width.

Although HDFView displays the entire image by the order of (dim[0], dim[1],
dim[2])=(depth, height, width) by default, you can always change the order and select a
subset for display as discussed in Chpater 5.

Hassana O.O REU Final Report

 7

HDFView also displays a three dimensional array as an array of 2D images arranged
along the third dimension, i.e. dim[0]=depth, dim[1]=height and dim[2]=width. You can
flip back and forth to look at images at different position of the depth dimension. For
instance, if the dataset is 20 x 400 x 600 (dim[0]=20, dim[1]=400, and dim[2]=600),
HDFView will display it as 20 images each with the size of 600 x 400 (width is 600,
height is 400). However, A three-dimension image of [1][height][width] or
[height][width][1] is treated as a two-dimension indexed image of [height][width].

A 2D or 3D SDS or HDF5 dataset with integer or float data can be displayed as an
indexed image using the "Open As" selection from the Object menu. Since the dataset
does not have a palette, a default palette is used. The palette is chosen from the "Select
Palette" menu in the "Dataset Selection" window. The predefined palettes include:

• gray
• rainbow
• nature
• wave

The default is "gray", a gray scale.

6.1.2 True Color Image

In the case of an image with more than one component per pixel (e.g., Red, Green, and
Blue), the data may be arranged in one of two ways. HDFView only supports three color
components: red, green and blue.

Following HDF4 terminology, the data may be interlaced by pixel or by plane. For an
HDF5 Image dataset the interlace should be indicated by the INTERLACE_MODE
attribute. In both cases, the dataset will have a dataspace with three dimensions, height,
width, and components. For pixel interlace the data is arranged by the order of
[height][width][pixel components]. For plane interlace the data is arranged by the order
[pixel components][height][width].

The translation from pixel values to color components for display or processing purposes
is a one-to-one correspondence of data values to components. Data of RGB color
components is converted into byte data, which is packed into single int pixel. The Java
Image is created with a DirectColorModel, with masks to define packed samples. This
color model is similar to an X11 TrueColor visual. The default RGB ColorModel
specified with the following parameters:

 Number of bits: 32
 Red mask: 0x00ff0000
 Green mask: 0x0000ff00
 Blue mask: 0x000000ff
 Alpha mask: 0xff000000
 Color space: sRGB
 isAlphaPremultiplied: False
 Transparency: Transparency.TRANSLUCENT

Hassana O.O REU Final Report

 8

 transferType: DataBuffer.TYPE_INT
The following figure shows examples of true color images. The image on the left is pixel
interleaving with dimensions of [149][227][3]. The image on the right is plane
interleaving with dimensions of [3][149][227].

True Color Image Displayed in the Image View

6.2 Zoom/Flip/Contour Image
HDFView supports only limited image manipulation such as zooming, flipping and
contour. You can zoom in and out of an image. The minimum zoom factor is 1/8
(reduced to 1/8 the size) and the maximum is 8 (magnified to 8 times the size). Reduction

Hassana O.O REU Final Report

 9

(zoom out) is done by sampling pixels, such as a 1/2 size image is created by selecting
every second pixel. Magnification (zoom in) is done by replicating pixels.

You can also flip an image horizontally or verticaly. Flipping an image will change the
coordinates of the image. This can be used to adjust images that may have been created
with different origins that the defaults.

The "contour" creates a contour plot of the pixel values. The contour can have from three
to nine contour levels. Level three has less details of contour and level nine has more
details of the contour. Repeated contour operation shows the accumulated effect of
contouring. For example, if you do contouring with level 3 and then do contouring
with level 4 on the same image, the final image shows the the effect of contouring
with level 4 of the contour image with level 3.

The following shows an contour image of level nine.

Hassana O.O REU Final Report

 10

Contour Image

6.3 View and Modify Image Palette/Values
A palette is the means by which color is applied to an image and is also referred to as a
color lookup table. It is a table in which every row contains the numerical representation
of a particular color. In the example of an 8-bit standard RGB color model palette, this
numerical representation of a color is presented as a triplet specifying the intensity of red,
green, and blue components that make up each color.

Hassana O.O REU Final Report

 11

Although the HDF5 palette specification allows for variable color length, different look-
up methods and color models beyond RGB, HDFView only supports the indexed RGB
color model of 256 colors. Clicking the palette icon from the tool bar or selecting the
palette command from the image menu, you can also see the red, green and blue
components of the color table are ploted in a line plot.

Image Palette (256 Colors)

To view pixel values of each individual point, check the "Show value" item in the
"Image" menu. When you move the mouse over the image, the pixel values of the mouse
point are shown at the bottom of the image.

You can modify the values of color table. Select the color (red, green or blue) in the
palette view and drag line of selected color. The value of selected color changes as you
move the color line. In the following figure, the image on the left is the orginal image and
the image on the right is the image with modified color table.

Hassana O.O REU Final Report

 12

Modified Image Palette (256 Colors)

6.4 Show Histogram of Pixel Values

Hassana O.O REU Final Report

 13

The frequency of pixel values of a selected area or the whole image can be displayed in a
histogram chart. The horizontal axis of the histogram chart is the the 256 pixel values.
The vertical axis shows the frequency of the pixel values.

Histogram of Pixel Values

6.5 Import JPEG Image to HDF4/5
Using HDFView, you can convert an JPEG image into HDF4 or HDF5 image. Selec the
"Import JPEG To" command in the file menu or the "JPEG To" command in the tools
menu, a popup window will ask you to choose an JPEG image file to convert. Image is
converted into 24-bit HDF4 or HDF5 image. The current conversion does not support
image with indexed color model or image with less than two color components. The
image data is saved as 8-bit unsigned integer regardless the data type of the original
image.

Hassana O.O REU Final Report

 14

OPEN CV, OPEN SOURCE COMPUTER VISION LIBRARY

Open CV is a cross platform, middle- to – high API (Application Programming Interface)
that consists of hundreds of C functions.

NOTE: THIS REFERENCE HAS BEEN EXTRACTED FROM THE SOURCE
BELOW

C:\Program Files\OpenCV\docs\index.htm
C:\Program Files\OpenCV\docs\ref\opencvref_cv.htm

Gradients, Edges and Corners

Sobel

Calculates first, second, third or mixed image derivatives using extended Sobel operator

void cvSobel(const CvArr* src, CvArr* dst, int xorder, int yorder, int
aperture_size=3);
src

Source image.
dst

Destination image.
xorder

Order of the derivative x .
yorder

Order of the derivative y .
aperture_size

Size of the extended Sobel kernel, must be 1, 3, 5 or 7. In all cases except 1,
aperture_size ×aperture_size separable kernel will be used to calculate the
derivative. For aperture_size=1 3x1 or 1x3 kernel is used (Gaussian smoothing
is not done). There is also special value CV_SCHARR (=-1) that corresponds to 3x3
Scharr filter that may give more accurate results than 3x3 Sobel. Scharr aperture
is:
| -3 0 3|
|-10 0 10|
| -3 0 3|
for x-derivative or transposed for y-derivative.

The function cvSobel calculates the image derivative by convolving the image with the
appropriate kernel:

dst(x,y) = dxorder+yodersrc/dxxorder•dyyorder |(x,y)

Hassana O.O REU Final Report

 15

The Sobel operators combine Gaussian smoothing and differentiation so the result is
more or less robust to the noise. Most often, the function is called with (xorder=1,
yorder=0, aperture_size=3) or (xorder=0, yorder=1, aperture_size=3) to calculate first x-
or y- image derivative. The first case corresponds to
 |-1 0 1|
 |-2 0 2|
 |-1 0 1|

kernel and the second one corresponds to

 |-1 -2 -1|
 | 0 0 0|
 | 1 2 1|
or
 | 1 2 1|
 | 0 0 0|
 |-1 -2 -1|
kernel, depending on the image origin (origin field of IplImage structure). No scaling
is done, so the destination image usually has larger by absolute value numbers than the
source image. To avoid overflow, the function requires 16-bit destination image if the
source image is 8-bit. The result can be converted back to 8-bit using cvConvertScale or
cvConvertScaleAbs functions. Besides 8-bit images the function can process 32-bit
floating-point images. Both source and destination must be single-channel images of
equal size or ROI size.

Laplace

Calculates Laplacian of the image

void cvLaplace(const CvArr* src, CvArr* dst, int aperture_size=3);
src

Source image.
dst

Destination image.
aperture_size

Aperture size (it has the same meaning as in cvSobel).

The function cvLaplace calculates Laplacian of the source image by summing second x-
and y- derivatives calculated using Sobel operator:

dst(x,y) = d2src/dx2 + d2src/dy2

Specifying aperture_size=1 gives the fastest variant that is equal to convolving the
image with the following kernel:

|0 1 0|
|1 -4 1|
|0 1 0|

Hassana O.O REU Final Report

 16

Similar to cvSobel function, no scaling is done and the same combinations of input and
output formats are supported.

Canny

Implements Canny algorithm for edge detection

void cvCanny(const CvArr* image, CvArr* edges, double threshold1,
 double threshold2, int aperture_size=3);
image

Input image.
edges

Image to store the edges found by the function.
threshold1

The first threshold.
threshold2

The second threshold.
aperture_size

Aperture parameter for Sobel operator (see cvSobel).

The function cvCanny finds the edges on the input image image and marks them in the
output image edges using the Canny algorithm. The smallest of threshold1 and
threshold2 is used for edge linking, the largest - to find initial segments of strong edges.

PreCornerDetect

Calculates feature map for corner detection

void cvPreCornerDetect(const CvArr* image, CvArr* corners, int
aperture_size=3);
image

Input image.
corners

Image to store the corner candidates.
aperture_size

Aperture parameter for Sobel operator (see cvSobel).

The function cvPreCornerDetect calculates the function Dx
2Dyy+Dy

2Dxx - 2DxDyDxy
where D? denotes one of the first image derivatives and D?? denotes a second image
derivative. The corners can be found as local maximums of the function:

// assuming that the image is floating-point
IplImage* corners = cvCloneImage(image);
IplImage* dilated_corners = cvCloneImage(image);

Hassana O.O REU Final Report

 17

IplImage* corner_mask = cvCreateImage(cvGetSize(image), 8, 1);
cvPreCornerDetect(image, corners, 3);
cvDilate(corners, dilated_corners, 0, 1);
cvSubS(corners, dilated_corners, corners);
cvCmpS(corners, 0, corner_mask, CV_CMP_GE);
cvReleaseImage(&corners);
cvReleaseImage(&dilated_corners);

CornerEigenValsAndVecs

Calculates eigenvalues and eigenvectors of image blocks for corner detection

void cvCornerEigenValsAndVecs(const CvArr* image, CvArr* eigenvv,
 int block_size, int aperture_size=3);
image

Input image.
eigenvv

Image to store the results. It must be 6 times wider than the input image.
block_size

Neighborhood size (see discussion).
aperture_size

Aperture parameter for Sobel operator (see cvSobel).

For every pixel the function cvCornerEigenValsAndVecs considers block_size ×
block_size neigborhood S(p). It calcualtes covariation matrix of derivatives over the
neigborhood as:

 | sumS(p)(dI/dx)2 sumS(p)(dI/dx•dI/dy)|
M = | |
 | sumS(p)(dI/dx•dI/dy) sumS(p)(dI/dy)2 |

After that it finds eigenvectors and eigenvalues of the matrix and stores them into
destination image in form (λ1, λ2, x1, y1, x2, y2), where
λ1, λ2 - eigenvalues of M; not sorted
(x1, y1) - eigenvector corresponding to λ1
(x2, y2) - eigenvector corresponding to λ2

CornerMinEigenVal

Calculates minimal eigenvalue of gradient matrices for corner detection

void cvCornerMinEigenVal(const CvArr* image, CvArr* eigenval, int
block_size, int aperture_size=3);
image

Input image.
eigenval

Hassana O.O REU Final Report

 18

Image to store the minimal eigen values. Should have the same size as image
block_size

Neighborhood size (see discussion of cvCornerEigenValsAndVecs).
aperture_size

Aperture parameter for Sobel operator (see cvSobel). format. In the case of
floating-point input format this parameter is the number of the fixed float filter
used for differencing.

The function cvCornerMinEigenVal is similar to cvCornerEigenValsAndVecs but it
calculates and stores only the minimal eigen value of derivative covariation matrix for
every pixel, i.e. min(λ1, λ2) in terms of the previous function.

FindCornerSubPix

Refines corner locations

void cvFindCornerSubPix(const CvArr* image, CvPoint2D32f* corners,
 int count, CvSize win, CvSize zero_zone,
 CvTermCriteria criteria);
image

Input image.
corners

Initial coordinates of the input corners and refined coordinates on output.
count

Number of corners.
win

Half sizes of the search window. For example, if win=(5,5) then 5*2+1 × 5*2+1 =
11 × 11 search window is used.

zero_zone
Half size of the dead region in the middle of the search zone over which the
summation in formulae below is not done. It is used sometimes to avoid possible
singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there
is no such size.

criteria
Criteria for termination of the iterative process of corner refinement. That is, the
process of corner position refinement stops either after certain number of iteration
or when a required accuracy is achieved. The criteria may specify either of or
both the maximum number of iteration and the required accuracy.

The function cvFindCornerSubPix iterates to find the sub-pixel accurate location of
corners, or radial saddle points, as shown in on the picture below.

Hassana O.O REU Final Report

 19

Sub-pixel accurate corner locator is based on the observation that every vector from the
center q to a point p located within a neighborhood of q is orthogonal to the image
gradient at p subject to image and measurement noise. Consider the expression:

εi=DIpiT•(q-pi)
where DIpi is the image gradient at the one of the points pi in a neighborhood of q. The
value of q is to be found such that εi is minimized. A system of equations may be set up
with εi' set to zero:
sumi(DIpi•DIpiT)•q - sumi(DIpi•DIpiT•pi) = 0

where the gradients are summed within a neighborhood ("search window") of q. Calling
the first gradient term G and the second gradient term b gives:

q=G-1•b

The algorithm sets the center of the neighborhood window at this new center q and then
iterates until the center keeps within a set threshold.

GoodFeaturesToTrack

Determines strong corners on image

void cvGoodFeaturesToTrack(const CvArr* image, CvArr* eig_image,
CvArr* temp_image,
 CvPoint2D32f* corners, int* corner_count,
 double quality_level, double min_distance,
 const CvArr* mask=NULL);
image

The source 8-bit or floating-point 32-bit, single-channel image.
eig_image

Temporary floating-point 32-bit image of the same size as image.
temp_image

Another temporary image of the same size and same format as eig_image.

Hassana O.O REU Final Report

 20

corners
Output parameter. Detected corners.

corner_count
Output parameter. Number of detected corners.

quality_level
Multiplier for the maxmin eigenvalue; specifies minimal accepted quality of
image corners.

min_distance
Limit, specifying minimum possible distance between returned corners; Euclidian
distance is used.

mask
Region of interest. The function selects points either in the specified region or in
the whole image if the mask is NULL.

The function cvGoodFeaturesToTrack finds corners with big eigenvalues in the image.
The function first calculates the minimal eigenvalue for every source image pixel using
cvCornerMinEigenVal function and stores them in eig_image. Then it performs non-
maxima suppression (only local maxima in 3x3 neighborhood remain). The next step is
rejecting the corners with the minimal eigenvalue less than
quality_level•max(eig_image(x,y)). Finally, the function ensures that all the corners
found are distanced enough from one another by considering the corners (the most
strongest corners are considered first) and checking that the distance between the newly
considered feature and the features considered earlier is larger than min_distance. So,
the function removes the features than are too close to the stronger features.

Filters and Color Conversion

Smooth

Smooths the image in one of several ways

void cvSmooth(const CvArr* src, CvArr* dst,
 int smoothtype=CV_GAUSSIAN,
 int param1=3, int param2=0, double param3=0);
src

The source image.
dst

The destination image.
smoothtype

Type of the smoothing:

Hassana O.O REU Final Report

 21

• CV_BLUR_NO_SCALE (simple blur with no scaling) - summation over a
pixel param1×param2 neighborhood. If the neighborhood size may vary,
one may precompute integral image with cvIntegral function.

• CV_BLUR (simple blur) - summation over a pixel param1×param2
neighborhood with subsequent scaling by 1/(param1•param2).

• CV_GAUSSIAN (gaussian blur) - convolving image with
param1×param2 Gaussian kernel.

• CV_MEDIAN (median blur) - finding median of param1×param1
neighborhood (i.e. the neighborhood is square).

• CV_BILATERAL (bilateral filter) - applying bilateral 3x3 filtering with
color sigma=param1 and space sigma=param2. Information about bilateral
filtering can be found at
http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilat
eral_Filtering.html

param1
The first parameter of smoothing operation.

param2
The second parameter of smoothing operation. In case of simple scaled/non-
scaled and Gaussian blur if param2 is zero, it is set to param1.

param3
In case of Gaussian parameter this parameter may specify Gaussian sigma
(standard deviation). If it is zero, it is calculated from the kernel size:
 sigma = (n/2 - 1)*0.3 + 0.8, where n=param1 for
horizontal kernel,
 n=param2 for
vertical kernel.

Using standard sigma for small kernels (3×3 to 7×7) gives better speed. If param3
is not zero, while param1 and param2 are zeros, the kernel size is calculated from
the sigma (to provide accurate enough operation).

The function cvSmooth smooths image using one of several methods. Every of the
methods has some features and restrictions listed below

Blur with no scaling works with single-channel images only and supports accumulation
of 8-bit to 16-bit format (similar to cvSobel and cvLaplace) and 32-bit floating point to
32-bit floating-point format.

Simple blur and Gaussian blur support 1- or 3-channel, 8-bit and 32-bit floating point
images. These two methods can process images in-place.

Median and bilateral filters work with 1- or 3-channel 8-bit images and can not process
images in-place.

Hassana O.O REU Final Report

 22

Filter2D

Convolves the image with the kernel

void cvFilter2D(const CvArr* src, CvArr* dst,
 const CvMat* kernel,
 CvPoint anchor=cvPoint(-1,-1));
#define cvConvolve2D cvFilter2D
src

The source image.
dst

The destination image.
kernel

Convolution kernel, single-channel floating point matrix. If you want to apply
different kernels to different channels, split the image using cvSplit into separate
color planes and process them individually.

anchor
The anchor of the kernel that indicates the relative position of a filtered point
within the kernel. The anchor shoud lie within the kernel. The special default
value (-1,-1) means that it is at the kernel center.

The function cvFilter2D applies arbitrary linear filter to the image. In-place operation is
supported. When the aperture is partially outside the image, the function interpolates
outlier pixel values from the nearest pixels that is inside the image.

Integral

Calculates integral images

void cvIntegral(const CvArr* image, CvArr* sum, CvArr* sqsum=NULL,
CvArr* tilted_sum=NULL);
image

The source image, W×H, single-channel, 8-bit, or floating-point (32f or 64f).
sum

The integral image, W+1×H+1, single-channel, 32-bit integer or double precision
floating-point (64f).

sqsum
The integral image for squared pixel values, W+1×H+1, single-channel, double
precision floating-point (64f).

tilted_sum
The integral for the image rotated by 45 degrees, W+1×H+1, single-channel, the
same data type as sum.

The function cvIntegral calculates one or more integral images for the source image as
following:

Hassana O.O REU Final Report

 23

sum(X,Y)=sumx<X,y<Yimage(x,y)

sqsum(X,Y)=sumx<X,y<Yimage(x,y)2

tilted_sum(X,Y)=sumy<Y,abs(x-X)<yimage(x,y)

Using these integral images, one may calculate sum, mean, standard deviation over
arbitrary pixel up-right or rotated rectangle in O(1), for example:

sumx1<=x<x2,y1<=y<y2image(x,y)=sum(x2,y2)-sum(x1,y2)-sum(x2,y1)+sum(x1,x1)

It makes possible to do a fast blurring or fast block correlation with variable window size
etc.

CvtColor

Converts image from one color space to another

void cvCvtColor(const CvArr* src, CvArr* dst, int code);
src

The source 8-bit or floating-point image.
dst

The destination 8-bit or floating-point image.
code

Color conversion operation that can be specifed using
CV_<src_color_space>2<dst_color_space> constants (see below).

The function cvCvtColor converts input image from one color space to another. The
function ignores colorModel and channelSeq fields of IplImage header, so the source
image color space should be specified correctly (including order of the channels in case
of RGB space, e.g. BGR means 24-bit format with B0 G0 R0 B1 G1 R1 ... layout, whereas
RGB means 24-format with R0 G0 B0 R1 G1 B1 ... layout). The function can do the
following transformations:

• Transformations within RGB space like adding/removing alpha channel,
reversing the channel order, conversion to/from 16-bit RGB color (Rx5:Gx6:Rx5)
color, 15-bit RGB color as well as conversion to/from grayscale using:

• RGB[A]->Gray: Y=0.212671*R + 0.715160*G + 0.072169*B + 0*A
• Gray->RGB[A]: R=Y G=Y B=Y A=0

All the possible combinations of input and output format are allowed here.

• RGB<=>XYZ (CV_BGR2XYZ, CV_RGB2XYZ, CV_XYZ2BGR,
CV_XYZ2RGB):

• |X| |0.412411 0.357585 0.180454| |R|
• |Y| = |0.212649 0.715169 0.072182|*|G|

Hassana O.O REU Final Report

 24

• |Z| |0.019332 0.119195 0.950390| |B|
•
• |R| | 3.240479 -1.53715 -0.498535| |X|
• |G| = |-0.969256 1.875991 0.041556|*|Y|
• |B| | 0.055648 -0.204043 1.057311| |Z|
• RGB<=>YCrCb (CV_BGR2YCrCb, CV_RGB2YCrCb, CV_YCrCb2BGR,

CV_YCrCb2RGB)
• Y=0.299*R + 0.587*G + 0.114*B
• Cr=(R-Y)*0.713 + 128
• Cb=(B-Y)*0.564 + 128
•
• R=Y + 1.403*(Cr - 128)
• G=Y - 0.344*(Cr - 128) - 0.714*(Cb - 128)
• B=Y + 1.773*(Cb - 128)
• RGB=>HSV (CV_BGR2HSV,CV_RGB2HSV)
• V=max(R,G,B)
• S=(V-min(R,G,B))*255/V if V!=0, 0 otherwise
•
• (G - B)*60/S, if V=R
• H= 180+(B - R)*60/S, if V=G
• 240+(R - G)*60/S, if V=B
•
• if H<0 then H=H+360

The hue values calcualted using the above formulae vary from 0° to 360° so they
are divided by 2 to fit into 8 bits.

• RGB=>Lab (CV_BGR2Lab, CV_RGB2Lab)
• |X| |0.433910 0.376220 0.189860| |R/255|
• |Y| = |0.212649 0.715169 0.072182|*|G/255|
• |Z| |0.017756 0.109478 0.872915| |B/255|
•
• L = 116*Y1/3 for Y>0.008856
• L = 903.3*Y for Y<=0.008856
•
• a = 500*(f(X)-f(Y))
• b = 200*(f(Y)-f(Z))
• where f(t)=t1/3 for t>0.008856
• f(t)=7.787*t+16/116 for t<=0.008856

The above formulae have been taken from
http://www.cica.indiana.edu/cica/faq/color_spaces/color.spaces.html

• Bayer=>RGB (CV_BayerBG2BGR, CV_BayerGB2BGR, CV_BayerRG2BGR,
CV_BayerGR2BGR,
CV_BayerBG2RGB, CV_BayerRG2BGR, CV_BayerGB2RGB,
CV_BayerGR2BGR,

Hassana O.O REU Final Report

 25

CV_BayerRG2RGB, CV_BayerBG2BGR, CV_BayerGR2RGB,
CV_BayerGB2BGR)

Bayer pattern is widely used in CCD and CMOS cameras. It allows to get color
picture out of a single plane where R,G and B pixels (sensors of a particular
component) are interleaved like this:

R G R G R

G B G B G

R G R G R

G B G B G

R G R G R

G B G B G

The output RGB components of a pixel are interpolated from 1, 2 or 4 neighbors
of the pixel having the same color. There are several modifications of the above
pattern that can be achieved by shifting the pattern one pixel left and/or one pixel
up. The two letters C1 and C2 in the conversion constants
CV_BayerC1C22{BGR|RGB} indicate the particular pattern type - these are
components from the second row, second and third columns, respectively. For
example, the above pattern has very popular "BG" type.

Threshold

Applies fixed-level threshold to array elements

void cvThreshold(const CvArr* src, CvArr* dst, double threshold,
 double max_value, int threshold_type);
src

Source array (single-channel, 8-bit of 32-bit floating point).
dst

Destination array; must be either the same type as src or 8-bit.
threshold

Threshold value.
max_value

Maximum value to use with CV_THRESH_BINARY and CV_THRESH_BINARY_INV
thresholding types.

threshold_type
Thresholding type (see the discussion)

Hassana O.O REU Final Report

 26

The function cvThreshold applies fixed-level thresholding to single-channel array. The
function is typically used to get bi-level (binary) image out of grayscale image (cvCmpS
could be also used for this purpose) or for removing a noise, i.e. filtering out pixels with
too small or too large values. There are several types of thresholding the function
supports that are determined by threshold_type:

threshold_type=CV_THRESH_BINARY:
dst(x,y) = max_value, if src(x,y)>threshold
 0, otherwise

threshold_type=CV_THRESH_BINARY_INV:
dst(x,y) = 0, if src(x,y)>threshold
 max_value, otherwise

threshold_type=CV_THRESH_TRUNC:
dst(x,y) = threshold, if src(x,y)>threshold
 src(x,y), otherwise

threshold_type=CV_THRESH_TOZERO:
dst(x,y) = src(x,y), if (x,y)>threshold
 0, otherwise

threshold_type=CV_THRESH_TOZERO_INV:
dst(x,y) = 0, if src(x,y)>threshold
 src(x,y), otherwise

And this is the visual description of thresholding types:

Hassana O.O REU Final Report

 27

AdaptiveThreshold

Applies adaptive threshold to array

void cvAdaptiveThreshold(const CvArr* src, CvArr* dst, double
max_value,
 int
adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C,

Hassana O.O REU Final Report

 28

 int threshold_type=CV_THRESH_BINARY,
 int block_size=3, double param1=5);
src

Source image.
dst

Destination image.
max_value

Maximum value that is used with CV_THRESH_BINARY and
CV_THRESH_BINARY_INV.

adaptive_method
Adaptive thresholding algorithm to use: CV_ADAPTIVE_THRESH_MEAN_C or
CV_ADAPTIVE_THRESH_GAUSSIAN_C (see the discussion).

threshold_type
Thresholding type; must be one of

• CV_THRESH_BINARY,
• CV_THRESH_BINARY_INV

block_size
The size of a pixel neighborhood that is used to calculate a threshold value for the
pixel: 3, 5, 7, ...

param1
The method-dependent parameter. For the methods
CV_ADAPTIVE_THRESH_MEAN_C and CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a
constant subtracted from mean or weighted mean (see the discussion), though it
may be negative.

The function cvAdaptiveThreshold transforms grayscale image to binary image
according to the formulae:

threshold_type=CV_THRESH_BINARY:
dst(x,y) = max_value, if src(x,y)>T(x,y)
 0, otherwise

threshold_type=CV_THRESH_BINARY_INV:
dst(x,y) = 0, if src(x,y)>T(x,y)
 max_value, otherwise

where TI is a threshold calculated individually for each pixel.

For the method CV_ADAPTIVE_THRESH_MEAN_C it is a mean of block_size ×
block_size pixel neighborhood, subtracted by param1.

For the method CV_ADAPTIVE_THRESH_GAUSSIAN_C it is a weighted sum (gaussian) of
block_size × block_size pixel neighborhood, subtracted by param1.

Hassana O.O REU Final Report

 29

Why is Face Detection Important?

Face detection is important in our technologically advanced world because it aids in
security surveillances and it is also man-power effective and time- effective.

In a surveillance tape or live- stream feed, a face recognition software can be used to find
a particular face in a crowd.

A face detecting software can be used to scan the surface of a pool where young children
are swimming. If for some reason a child goes under, an alarm will go off because it
wouldn’t be able to find a face in the image, thereby alerting a rescue party.

The Face detection technique can also be applied to different situations such as motion
tracking, whereby a person walking in a parking lot of moving cars can be detected. Or as
a security measure whereby a person walking about in a restricted area would be easily
detected.

NOTE: THIS IS A REFERENCE EXTRACTED FROM THE WEBSITE BELOW

http://www.geocities.com/jaykapur/face.html

Face Detection in Color Images

Jay P. Kapur
EE499 Capstone Design Project Spring 1997

University of Washington Department of Electrical Engineering

Abstract

Hassana O.O REU Final Report

 30

This paper presents a technique for automatically detecting human faces in digital color
images. The system relies on a two step process which first detects regions which are
likely to contain human skin in the color image and then extracts information from these
regions which might indicate the location of a face in the image. The skin detection is
performed using a skin filter which relies on color and texture information. The face
detection is performed on a grayscale image containing only the detected skin areas. A
combination of threshholding and mathematical morphology are used to extract object
features that would indicate the presence of a face. The face detection process works
predictably and fairly reliably, as test results show.

I. Introduction

Designing a system for automatic image content recognition is a non-trivial task that has
been studied for a variety of applications. Computer recognition of specific objects in
digital images has been put to use in manufacturing industries, intelligence and
surveillance, and image database cataloging to name a few. In this project, a prototype
algorithm for automating the detection of human faces in digital photographs was
developed and can serve as an introduction for future work in detecting people in images.

Several systems designed for the purpose of finding people or faces in images have
already been proposed by numerous research groups. Some of these programs, such as
the Rowley, Baluja, and Kanade system developed at Carnegie Mellon, rely on training
of a neural network and computing distance measures between training sets to detect a
face. Other software packages exist which can recognize facial features in pictures known
to contain a human face somewhere in the image. This project focused on face detection
in arbitrary color images and differs from the first type of system in that it relies on a
combination of color and grayscale information. Additionally, it does not require the time
consuming process of training a neural net or computing distance measures between
every possible region in the image. The developed system also differs from those
software packages that recognize facial features because, in this scenario, the task is to
detect a facial region in an arbitrary image, and not to analyze images known to contain a
face.

The process for detection of faces in this project was based on a two-step approach. First,
the image is filtered so that only regions likely to contain human skin are marked. This
filter was designed using basic mathematical and image processing functions in
MATLAB and was based on the skin filter designed for the Berkeley-Iowa Naked People
Finder. Modifications to the filter algorithm were made to offer subjective improvement

Hassana O.O REU Final Report

 31

to the output. The second stage involves taking the marked skin regions and removing the
darkest and brightest regions from the map. The removed regions have been shown
through empirical tests to correspond to those regions in faces which are usually the eyes
and eyebrows, nostrils, and mouth. By performing several basic image analysis
techniques, the regions with "holes" created by the threshholding can be considered likely
to be faces. This second stage was a combination of Khoros visual programming and
MATLAB functions. The entire system was entirely automated and required no user
intervention save for indicating the correct file names to be processed at each stage.
While not implemented in this project, a more advanced program could implement a third
step to discriminate between hole sizes and spatial relationships to make an even more
robust detection system.

II. Skin Filter

The skin filter is based on the Fleck and Forsyth algorithm with some modifications. For
comparison, one might want to consult their report published on the Web at
http://www.cs.uiowa.edu/~mfleck/vision-html/naked-skin.html. In this project, the filter was built in
MATLAB. Several of the low level image processing functions are already built into the
MATLAB environment and this project required time to be invested in building a
working filter algorithm, not writing code for low level functions. A description of how
the filter operates will be detailed in this section, and the skin filter function as written in
MATLAB format is provided in Appendix A.

Original RGB image

The input color image should be in RGB format with color intensity values ranging from
0 to 255. Due to restrictions on speed and performance, this project used images smaller

Hassana O.O REU Final Report

 32

than 250x250 in area. The RGB matrices are "zeroed" to supposedly prevent desaturation
when the image is converted from RGB color space to IRgBy color space. The smallest
intensity value greater than 10 pixels from any edge in any of the three color planes is set
as the zero-response of the image. This value is subtracted from all three color planes.

The RGB image is transformed to log-opponent (IRgBy) values and from these values
the texture amplitude, hue, and saturation are computed. The conversion from RGB to
log-opponent is calculated according to a variation on the formula given by Fleck&
amp;Forsyth:

I= [L(R)+L(B)+L(G)]/3

Rg = L(R)-L(G)

By = L(B)-[L(G)+L(R)]/2

The L(x) operation is defined as L(x)=105*log10(x+1). The Rg and By matrices are then
filtered with a windowing median filter of with sides of length 4*SCALE. The SCALE
value is calculated as being the closest integer value to (height+width)/320. The m edian
filtering is the rate limiting step throughout the skin detection process, and could be
improved by implementing an approximation of a windowing median filter as suggested
by Fleck’s multi-ring operator.

A texture amplitude map is used to find regions of low texture information. Skin in
images tends to have very smooth texture and so one of the constraints on detecting skin
regions is to select only those regions with little texture. The texture map is generated
from the matrix I by the following steps:

1. Median filter I with a window of length 8*SCALE on a side

2. Subtract the filtered image from the original I matrix

3. Take the absolute value of the difference and median filter the result with a window of
length 12*SCALE on a side.

Hassana O.O REU Final Report

 33

Texture Amplitude Map

Hue and saturation are used to select those regions whose color matches that of skin. The
conversion from log opponent to hue is hue = (atan2(Rg,By)), where the resulting value is
in degrees. The conversion from log opponent to saturatio n is saturation =
sqrt(Rg2+By2). Using constraints on texture amplitude, hue, and saturation, regions of
skin can be marked.

Hue Image

Hassana O.O REU Final Report

 34

Saturation Image

If a pixel falls into either of two ranges it is marked as being skin in a binary skin map
array where 1 corresponds to the coordinates being a skin pixel in the original image and
0 corresponds to a non-skin pixel. The allowed ranges are either :

(1) texture<4.5, 120<HUE<saturation<60<>

(2) texture<4.5, 150<HUE<saturation<80<>

The skin map array can be considered as a black and white binary image with skin
regions (value 1) appearing as white. The binary skin map regions are expanded using a
dilation operator and a disc structuring element. This helps to enlarge the skin map
regions to include skin/background border pixels, regions near hair or other features, or
desaturated areas. The dilation adds 8-connected pixels to the edges of objects. In this
implementation, the dilation was performed recursively five times for best results. The
expanded map regions are then checked against a lenient constraint on hue and saturation
values, independent of texture. If a point marked in the skin map corresponds to a pixel
with 110<=hue<=180 and 0<=saturation<=130, the value remains 1 in the map.

Hassana O.O REU Final Report

 35

Skin Map

The skin filter is not perfect, either due to coding errors or improper constraints, because
there is a tendency for highly saturated reds and yellows to be detected as skin. Often this
causes problems in the face detection when a large red or yellow p atterned object is
present in the image. See the results in Appendix B for several examples of the skin filter
output and cases in which the skin filter marked highly saturated red and yellow as skin.

III. Face Detection From Skin Regions

The binary skin map and the original image together are used to detect faces in the image.
The technique relies on threshholding the skin regions properly so that holes in face
regions will appear at the eyebrows, eyes, mouth, or nose. Theoretically, all other regions
of skin will have little or no features and no holes will be created except for at the desired
facial features. This method seems to be an oversimplification of the problem, but with
some additional constraints on hole sizes or spatial relationships, could prove to be a
powerful, fast, and simple alternative to neural network processes.

Detection of face regions was broken into two parts, the first using the Khoros visual
programming application and the second part using a MATLAB program. The two
Khoros workspaces are shown in Appendix A along with the MATLAB code. All of the
functions used are standard image analysis techniques (hole filling algorithms,
threshholding, connected components labeling, etc.) that should be straightforward,
though perhaps tedious, to build in any programming language.

Hassana O.O REU Final Report

 36

The first step is to ensure that the binary skin map is made up of solid regions (i.e. no
holes). Closing holes in the skin map is important because later the program assumes that
the only holes are those generated after the threshholding operation. A hole closing is
performed on the skin map image with a 3x3 disc structuring element and then this image
is multiplied by a grayscale conversion of the original image. The result is a grayscale
intensity image showing only the parts of the image containing skin.

Skin Map Multiplied by Grayscale Image

To improve contrast, a histogram stretch is performed on the resulting grayscale image.
This helps to make the dark and light regions fall into more predictable intensity ranges
and compensates somewhat for effects of illumination in the image. The image can now
be threshholded to remove the darkest and lightest pixels. Experimentation showed that
an acceptable threshold was to set all pixels with values between 95 and 240 equal to 1
and those pixels above and below the cutoff equal to 0. For most test images, this
threshold work quite well. The binary image created by the threshold is then passed
through a connected components labeling to generate a "positive" image showing distinct
skin regions.

Hassana O.O REU Final Report

 37

Positive Labeled Image

A negative image is next generated that will show only holes as objects. Hole closing of
the binary image generated by the threshold operation is performed with a 4x4 disc
structuring element. The result is subtracted from the original binary image and the
difference shows only hole objects.

Negative ‘Hole’ Image

The negative hole image and the positive labeled image are then used together to find
which objects in the image might be faces. First those holes in the negative image which
are only 1 pixel in size are removed because these tend to represent anomalous holes. An
even better technique might be to remove all but the three largest hole objects from the
negative image. The hole objects are expanded using a dilation and this binary image is
then multiplied by the positive labeled image. The product is an image where only the
pixels surrounding a hole are present. Because the positive image was labeled, the

Hassana O.O REU Final Report

 38

program can easily determine which objects have holes, and which do not. A simple
function computes which integers appear in the hole adjacency image and then generates
an output image containing the labeled connected components that have this value.

Face Objects

Because this process relies only on finding holes in threshholded objects, there is a
greater chance of finding faces regardless of the perspective. A drawback is that there is
also a greater risk of detecting non-face objects. The test results show very good
performance when a face occupies a large portion of the image, and reasonable
performance on those images depicting people as part of a larger scene. To make the
program more robust, detected face objects could be rejected if they don’t occupy a
significant area in the image. Another drawback of this process is that images in which
people appear partially clothed tend will result in a very large skin map. The result is
often a labeling of the entire head, arms, and torso as a single object. Thus the face
finding is an overestimate of potential skin objects. All things considered, this technique
developed over a period of ten weeks shows promise and with some "intelligence" added
to the algorithm, could generate very reliable results on a wide variety of images.

Appendix A
Matlab Code
This code is used for the skin filter and the final face region detection. The Khoros
workspaces are long gone, but it is easy enough to write Matlab code to do the same
thing.

skinfilt.m
skinmap.m
logopp.m
face.m
fscript.m

Hassana O.O REU Final Report

 39

A picture is worth more than a thousand words.

We have heard this expression countless times. A picture gives a much clearer impression
of a situation or an object than numerous descriptions. Having an accurate visual
perceptive of things has a high social, economic and technical value that is why image
analysis (a.k.a. image understanding), image processing and computer vision plays a
huge role in the research industry today.

Digital image processing stems from two different application areas:

1) Improvement of pictorial information for human interpretation
2) Processing of image data for storage, transmission and representation of

autonomous machine perception.

What is Digital Image Processing?

The field of digital image processing refers to processing digital images by means
of a digital computer. A digital image composes of a finite number of elements which
have a particular location and value and these elements are referred to as picture
elements, image elements, pels and pixels.

 Images are referred to more than just the projections generated by the visual band
of the EM (electromagnetic) waves apparent to humans. Images generated from the entire
band of the EM waves ranging from gamma to radio waves can be perceived by imaging
machines. Some of these images include ultrasound, electron microscopy, and computer-
generated images.

 There are 3 computerized processing levels:

1) Low-level process: - is characterized by the fact that both the inputs and outputs
are images. These involve primitive operations such as image preprocessing to
reduce noise, contrast enhancement and image sharpening.

2) Mid-level process: - is characterized by the fact that its inputs generally are
images, but its outputs are attributes extracted from those images such as, edges,
contours, and the identity of individual objects. Mid-level processing on images
involves tasks such as segmentation (partitioning an image into regions or
objects), description of those objects to reduce them to a form suitable for
computer processing, and classification (recognition) of individual objects.

3) High-level process: - involves trying deduce an ensemble of recognized objects,
from image analysis to performing the cognitive function usually associated with
vision.

Hassana O.O REU Final Report

 40

Origins of Digital Image Processing

In the early 1920’s the Bartlane cable picture transmission system was introduced,

thereby reducing the transportation time for a picture from New York to England by
days. Digital images were first applied in the newspaper industry when pictures were first
set by submarine cable between London and New York, then the Bartlane cable was
introduced reducing transmission time from three weeks to three hours.

There were different phases in technology improvement; in 1921 the method used

for receiving images through a coded tape by a telegraph printer was abandoned in favor
of a technique based on photographic reproduction made from tapes perforated at the
telegraph receiving terminal with evident improvement in both tonal quality and
resolution.

The history of digital image processing is intimately tied to the development of the digital
computer. The first computers powerful enough to carry out meaningful image
processing tasks appeared in the early 1960s. This was when there was significant
development of the high-level programming languages COBOL (common business-
oriented language) and FORTRAN (formula translator) and the development of operating
systems. The birth of digital image processing can be traced to the availability of
advanced computers and the onset of the space program during that period. Work on
using computer techniques for improving images from a space probe began at the Jet
Propulsion Laboratory in Pasadena, California in 1964 when pictures of the moon
transmitted by RANGER 7 were processed by a computer to correct various types of
image distortion inherent in the on-board television camera.

Hassana O.O REU Final Report

 41

Fields that Use Digital Image Processing

In parallel with space applications, digital image processing techniques in the late
1960s and early 1970s to be used in (1) medical imaging, (2) remote Earth resources
observations and (3) astronomy.

(1) Medical imaging-- The invention in the early 1970s of computerized axial
tomography (CAT) is one of the most important events in the application of image
processing in medical diagnosis. Tomography consists of algorithms that use the sensed
data to construct an image that represents a slice through the object which compose a
three-dimensional (3-D) version of the inside of the object.

Tomography was invented independently by Sir Godfrey N. Hounsfield and
Professor Allan M. Cormack, who shared the 1979 Nobel Prize in Medicine for their
invention. X-rays were discovered in 1895 by Wilhelm Conrad Roentgen, for which he
received the 1901 Nobel Prize in Physics. These two inventions, nearly 100 years apart
led to some of the most active application areas of image processing today.

Computer procedures are also used to enhance the contrast or code the intensity
levels into color for easier interpretation of X-rays and other images used in industry,
medicine, and the biological sciences.

(2) Remote earth resources and observations-- Geographers use the same or
similar techniques to study pollution patterns from aerial and satellite imagery. Image
enhancement and restoration procedures are used to process degraded images of
unrecoverable objects or experimental results too expensive to duplicate. In archaeology,
image processing methods have successfully restored blurred pictures that were the only
available records of rare artifacts lost or damaged after being photographed.

In physics and other related fields, computer techniques routinely enhance images

of experiments in areas such as high-energy plasmas and electron microscopy. Similarly
successful applications of image processing concepts can be found in astronomy, biology,
nuclear medicine, law enforcement defense, and industrial applications.

These examples illustrate processing results intended for human interpretation.
The second major area of application of digital image processing techniques deals with
machine perception. In this case interest focuses on procedures for extracting from an
image, information in a form suitable for computer processing. Examples of the type of
information used in machine perception are statistical moments, Fourier transform
coefficients, and multidimensional distance measures. Typical problems in machine
perception that routinely utilize image processing techniques are automatic character
recognition, industrial machine vision for product assembly and inspection, military
recognizance, automatic processing of fingerprints, screening of X-rays and blood
samples, and machine processing of aerial and satellite imagery for weather prediction
and environmental assessment.

Hassana O.O REU Final Report

 42

Fundamental Steps in Digital Image Processing

Image acquisition- is the first process which involves preprocessing such as scaling.

Image enhancement- this is bringing out obscured detail or highlighting certain features
of interest in an image. This technique deals with a number of mathematical functions
such as the Fourier Transform.

Image restoration- it improves the appearance of an image but is objective in the sense
that this technique tends to be based on mathematical or probabilistic models of image
degradation.

Color image processing- this is used as a basis for extracting features of interest in an
image.

Wavelets- are the foundation for representing images in various degrees of resolution.

Compression- deals with techniques for reducing the storage required to save an image,
or the bandwidth required to transmit it.

Morphological processing- deals with tools for extracting image components that are
useful in the representation and description of shape.

Segmentation- partitions an image into its constituent parts or objects.

Representation and description- representation is necessary for transforming raw data into
a form suitable for subsequent computer processing. Description, also known as feature
selection, deals with extracting attributes that result in some quantitative information of
interest.

Recognition- assigns a label to an object based on its descriptors.

Feature Extraction- this is an area of image processing which involves using algorithms
to detect and isolate various desired portions of a digitized image or video stream.

Hassana O.O REU Final Report

 43

Feature Extraction/Detection

This is an area of image processing that uses algorithms to detect and isolate varius
desired portions of a digitized image.

Feature Extraction Techniques
 Hough Transform-

This identifies lines in an image as well as arbitrary shapes. The purpose of the transform
is to determine which of these theoretical lines pass through most features in an image.
The input to a Hough transform is usually one to which some kind of edge detection has
been applied instead of a raw image.

Each line is represented by two parameters, commonly called r and θ which represent the
length and angle from the origin of a normal to the line in question. In other words, a line
is said to be 90° from θ and r units away from the origin at its closest point. By
calculating the value of r for every possible value of θ, a sinusoidal curve is created
which is unique to that point. This representation of the two parameters is sometimes
referred to as Hough space. Thus the points to be transformed are likely to lie on an
‘edge’ in the image. The transform itself is quantized into an arbitrary number of bins,
each representing an approximate definition of a possible line. Each significant point (or
feature) in the edge detected is said to vote for a set of bins corresponding to the lines that
pass through it. By simply incrementing the value stored in each bin for every feature
lying on that line, an array is built up which shows which lines fit most closely to the data
in the image.

Hough transform of curves, and Generalized Hough transform

The transform described above applies to finding straight lines; a circle for instance can
be transformed into a set of three parameters representing its center and radius, so that the
Hough space becomes three dimensional. Arbitrary ellipses, curves and shapes expressed
as a set of parameters can be found this way. For more complicated shapes, the
Generalized Hough transform is used, which allows a feature to vote for particular
position, orientation and/scaling or the shape using a predefined look-up table.

Using Weighted Features

The Hough transform accounts for uncertainty in the underlying detection of edges by
allowing features to vote with varying weight.

Hierarchical Hough Transform

Hassana O.O REU Final Report

 44

A final enhancement that is sometimes effective is to perform a hierarchical set of Hough
transform on the same image, using progressively smaller bins. If the image is first
analyzed using a small number of bins, each representing a large range of potential lines,
the most likely of these can then be analyzed in more detail. That is finding the bins with
the highest count in one stage can be used to constrain the range of values searched in the
text.

Image Feature Detection based on Scale-Interaction Model

This feature detector is responsive to short lines, line endings, corners and other sharp
changes in curvature. Features are locations in an image that are perceptually interesting.
Previous work on feature detection includes the use of grey level statistics and the
detection of edges and corners.
 Detecting edges and corners are particularly useful in analysis of aerial images of
urban scenes, airport facilities, image to map matching, etc.

Algorithms based on grey level statistics are applicable to a wider variety of
images such as desert scenes and vegetation and images which don’t necessarily contain
man made structures.

Hassana O.O REU Final Report

 45

DICTIONARY

Raster Image :-
 An image that is composed of pixel patterns, also known as Bitmapped Image

Pixel :-
It is the smallest complete element of an Image.
It is a picture element. The quality of an image depends on the number of pixels per inch
that make up that image.

