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Petri Nets and Industrial Applications: A Tutorial 
Richard Zurawski and MengChu Zhou 

Abstract-This is a tutorial paper on Petri nets. Petri nets, as a 
graphical and mathematical tool, provide a uniform environment 
for modelling, formal analysis, and design of discrete event 
systems. 

The main objective of this paper is to introduce the fundamen- 
tal concepts of Petri nets to the researchers and practitioners, 
both from academia and industry, who are involved in the work in 
the areas of modelling and analysis of industrial types of systems, 
as well as those who may potentially be involved in these areas. 

The paper begins with an overview of applications of Petri 
nets, mostly industrial ones. Then, it proceeds with a description 
of Petri nets, properties, and analysis methods. The discussion 
of properties is put in the context of industrial applications. The 
analysis methods are illustrated using an example of a simple 
robotic assembly system. The performance analysis, using Petri 
nets, is discussed for deterministic and stochastic Petri nets. The 
presented techniques are illustrated by examples representing 
simple production systems. In addition, the paper introduces 
high-level Petri nets, fuzzy Petri nets, and temporal Petri nets. 
This is done in the context of application prospects. The paper 
also briefly discusses some of the reasons restricting the use of 
Petri nets, mostly, to academic institutions. 

I. INTRODUCTION 

HE growth in the complexity of modem industrial sys- T tems, such as production, process control, communication 
systems, etc., creates numerous problems for their developers. 
In the planning stage, one is confronted with increased ca- 
pabilities of these systems due to the unique combination of 
hardware and software. which operate under a large number 
of constraints arising from the limited system resources. In 
view of the capital intensive and complex nature of modem 
industrial systems, the design and operation of these systems 
require modeling and analysis in order to select the optimal 
design alternative, and operational policy. It is well-known 
that flaws in the modeling process can substantially contribute 
to the development time and cost. The operational efficiency 
may be affected as well. Therefore special attention should 
be paid to the correctness of the models that are used at all 
planning levels. 

Petri nets, as graphical and mathematical tools, provide 
a uniform environment for modeling, formal analysis, and 
design of discrete event systems. One of the major advantages 
of using Petri net models is that the same model is used 
for the analysis of behavioral properties and performance 
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evaluation, as well as for systematic construction of discrete- 
event simulators and controllers. Petri nets were named after 
Carl A. Petri who created in 1962 a net-like mathematical tool 
for the study of communication with automata. Their further 
development was facilitated by the fact that Petri nets can 
be used to model properties such as process synchronization, 
asynchronous events, concurrent operations, and conflicts or 
resource sharing. These properties characterize discrete-event 
systems whose examples include industrial automated systems, 
communication systems, and computer-based systems. These, 
and other factors discussed in this paper, make Petri nets a 
promising tool and technology for application to Industrial 
Automation. 

Petri nets as graphical tools provide a powerful commu- 
nication medium between the user, typically requirements 
engineer, and the customer. Complex requirements specifi- 
cations, instead of using ambiguous textual descriptions or 
mathematical notations difficult to undersland by the customer, 
can be represented graphically using Petri nets. This combined 
with the existence of computer tools allowing for interactive 
graphical simulation of Petri nets, puts in hands of the develop- 
ment engineers ii powerful tool assisting in the development 
process of complex systems. 

As a mathematical tool, a Petri net model can be described 
by a set of linear algebraic equations, or other mathematical 
models reflecting the behavior of the system. This opens a 
possibility for the formal analysis of the model. This allows 
one to perform a formal check of the properties related 
to the behavior of the underlying system, e.g., precedence 
relations amongst events, concurrent operations. appropriate 
synchronization, freedom from deadlock, repetitive activities. 
and mutual exclusion of shared resources, to mention some. 
The simulation based model validation can only produce a 
limited set of states of the modeled system. and thus can only 
show presence (but not absence) of errors in the model, and its 
underlying requirements specification. Tht: ability of Petri nets 
to verify the model formally is especially important for real- 
time safety-critical systems such as air-traffic control systems. 
rail-traffic control systems, nuclear reaclor control systems. 
etc. Petri nets %ere used to model real-time fault tolerant 
and safety-critical systems in [ I  I]-[ 121, 1651. Fault detection 
and in-process monitoring were modeled and analyzed in 
1271, 1961, I l O l l .  

One of the most successful application areas of Petri nets 
has been modeling and analysis of communication protocols 
[14-15], [22], 1381. 1371, [42], 1531, [84]. The work in this 
area can be dated back to the early 1970s. In the past few 
years, a number of approaches have been proposed which 
allow for the construction of Petri net rnodels of protocols 
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from specifications written in a relatively skill-free languages 
[62], 1991. Methods were also proposed for transforming SDL 
1331, Lotos [9], and Estelle [ 1061 based protocol specifications 
into Petri nets for performance and reliability analysis. 

Petri nets have been used extensively to model and analyze 
manufacturing systems. In this area, Petri nets were used 
to represent simple production lines with buffers, machine 
shops, automotive production systems, flexible manufacturing 
systems, automated assembly lines, resource-sharing systems, 
and recently just-in-time and kanban manufacturing systems. 
Some of the most recent developments involving modeling and 
qualitative analysis were reported in [I] ,  151, [IO]. [ 1101-[113]. 
The deadlock avoidance was studied in [7], [52],  [103]. 

The application of Petri nets to modeling sequence con- 
trollers is another success story. Programmable Logic Con- 
trollers are commonly used for the sequence control in auto- 
mated systems. They are designed using ladder logic diagrams, 
which are known to be very difficult to debug and modify. 
Petri net based sequence controllers, on the other hand, are 
easy to design, implement, and maintain. In the early So's, 
Hitachi Ltd. developed a Petri net based sequence controller 
[78] which was successfully used in real applications to control 
parts assembly system, and automatic warehouse load/unload 
system. The use of Petri nets, as reported, substantially reduced 
the development time compared with the traditional approach. 
Numerous approaches to the synthesis and implementation of 
Petri net based sequence controllers have been reported in the 
past few years [35], [41 I ,  [541, [791, [109]-[111 I. 

Petri nets have been extensively used in software devel- 
opment. The work in this area focused on modeling and 
analysis of software systems using Petri nets 1881. The most 
mature developments involve the use of colored Petri nets. 
Colored Petri nets have been demonstrated in [57] to be 
a useful language for the design, specification, simulation, 
validation and implementation of large software systems. 
An integrated software development methodology based on 
hierarchical colored Petri nets was described in [82]. This 
approach allows for automatic translation of SADT diagrams 
into colored Petri nets for formal analysis, and for converting 
the nets into executable code. The design and analysis of 
Ada systems have also attracted a considerable attention 
1641, 1771, 1931. 

Petri nets, as a mathematical tool, allow for the performance 
evaluation of the modeled systems. Both deterministic and 
stochastic performance measures can be evaluated by using 
a broad class of Petri net models incorporating in their 
definitions deterministic and/or probabilistic time functions. 
The performance evaluation can be conducted using either 
analytical techniques, based on solving the underlying (semi)- 
Markov processes, or discrete event simulation. The use of 
models which incorporate time functions having probabilis- 
tic distributions allows one to obtain production rates for 
manufacturing system models, throughput, delays, capacity 
for communication and microprocessor system models, as 
well as critical resource utilization and reliability measures 
for these and other systems. In recent years, this class of 
Petri net models has been extensively used to model and 
study analytically performance of multiprocessor systems [3 I ] ,  

[ S O ] ,  (681, multiprocessor system buses [46]. [59]-[60], DSP 
communication channels [48], parallel computer architectures 
1241, [IOS], as well as parallel distributed algorithms 161. 

Another area of applications was communication networks. 
Work was conducted on Fiber Optics Local Area Networks 
such as Expressnet, Fastnet, D-Net, U-Net. Token Ring [67]. 
Fieldbuses, such as FIP and ISA-SP50, have attracted lots of 
attention in the last two years 1131, [26], [SS]. This is not 
surprising, since they are very important networks for factory 
automation. The interest steadily grows in modeling and 
evaluation of High Speed Networks, crucial for the successful 
development of Multimedia Systems [23], [25]. 

The performance of production systems, involving simple 
production lines, job shops, robotic assembly cells, flexible 
manufacturing systems, etc., was studied in [4], [191, [43], 
[49], 1611. 1711, [110]. When a state explosion problem arises, 
or the underlying stochastic models are not amenable for 
tractable mathematical analysis, simulation may be conducted 
for the analysis of both qualitative and quantitative properties 
[39], [74], [104]. The discrete-event simulation can be driven 
from the model, sometimes using complex algorithmic strate- 
gies representing real-time scheduling and control policies of 
production systems [701, [891. 

Petri nets with time extensions, combined with heuristic 
search techniques, were used to model and study scheduling 
problems involving manufacturing systems [3], [63], [91], as 
well as robotic systems [901, 11081. The robotic assembly and 
trajectory planning using Petri nets were presented in [72]. 

Petri nets with time extensions were also used to model 
and analyze dynamics of continuous chemical processes [36]. 
The continuous time and discrete-event process control was 
modeled and analyzed in [17], 1181, [47], [SI], 11071. 

This brief overview of applications of Petri nets focused 
mainly on selected industrial areas. The references used were 
either the most representative in the area, or the most re- 
cent ones. The bibliography of Petri nets [83], published in 
199 1 ,  contains 4099 entries dealing with Petri net theory and 
applications. 

The main objective of this paper is to introduce the fun- 
damental concepts of Petri nets to the researchers and prac- 
titioners, both from academia and industry, who are actively 
involved in the work in the areas of modeling and analysis 
of industrial type of systems, as well as those who may 
potentially become involved in these areas in the future. 
The presentation focuses on the ordinary Petri nets, although 
other types of Petri nets are also introduced in the context 
of the application driven developments. Additional tutorial 
material on Petri nets may be found in [38], [43], [76], 
1811, [86]. This paper is organized as follows. The Petri 
net description and definitions are presented in Section 2. 
This section, also, includes an example illustrating the use of 
Petri nets in the modeling of a simple multirobot assembly 
system. Some of the most fundamental properties of Petri 
nets, such as reachability, boundedness, conservativeness, and 
liveness, are discussed in Section 3. The analysis methods 
are presented in Section 4. The methods covered in this 
section are based on the coverability tree, and the incidence 
matrix and state equations. The two methods are, then, used 
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Fig. I .  Example of’ graphical representation of a Petri net 

to analyze the model of the multirobot assembly system. The 
performance analysis of Petri nets is presented in Section 5.  
Section 5 introduces the fundamental concepts instrumental 
in performance evaluation of timed, and stochastic timed 
Petri net models. The application prospects of Petri nets are 
discussed in Section 6, including the application driven Petri 
nets development. 

11. DESCRIPTION OF PETRI NETS 

A Petri net may be identified as a particular kind of bipartite 
directed graph populated by three types of objects. These 
objects are places, transitions, and directed arcs connecting 
places to transitions and transitions to places. Pictorially, 
places are depicted by circles and transitions as bars or boxes. 
A place is an input place to a transition if there exists a 
directed arc connecting this place to the transition. A place 
is an output place of a transition if there exists a directed 
arc connecting the transition to the place. In its simplest 
form, a Petri net may be represented by a transition together 
with its input and output places. This elementary net may be 
used to represent various aspects of the modeled systems. For 
instance, input (output) places may represent preconditions 
(postconditions), the transition an event. Input places may 
represent the availability of resources, the transition their 
utilization, output places the release of the resources. An 
example of a Petri net is shown in Fig. 1 .  This net consists of 
five places, represented by circles, four transitions, depicted 
by bars, and directed arcs connecting places to transitions 
and transitions to places. In this net, place p1 is an input 
place of transition t l .  Places p2,  and 113 are output places of 
transition t l .  

Fig. 2 .  (a) Multiple cuc5. (b) Compact representation of multiple arcs 

In order to study dynamic behavior of the modeled sys- 
tem, in terms ot‘ its states and their changes, each place 
may potentially hold either none or a positive number of 
tokens, pictured by small solid dots, a:i shown in Fig. 1. 
The presence or absence of a token in a. place can indicate 
whether a condition associated with th-is place is true or 
false, for instance. For a place representing the availability 
of resources, the number of tokens in this place indicates the 
number of available resources. At any given time instance, 
the distribution of. tokens on places, called Petri net marking, 
defines the current state of the modeled system. A marking of a 
Petri net with VL places is represented by an ( r n  x 1) vector hl, 
elements of which, denoted as M ( p ) ,  are nonnegative integers 
representing the number of tokens in the corresponding places. 
A Petri net containing tokens is called a marked Petri net. 
For example, in the Petri net model shown in Fig. 1, M = 
(1,O3U,U,O)? 

Formally, a Petri net can be defined as follows: 

PN = (P? 2’. I .  0: AdO); where 

1 .  P = ( p 1  p 2 ,  ..... pn t }  is a finite set of places, 
2. 7’ = { t l ,  /,2. .... ~ tTL} is a finite set of transitions, PUT’ # 

8, and P n T = 8, 
3. I : ( P  x T) H N is an input function that defines 

directed arcs from places to transitions, where N is a set 
of nonnegative integers, 

4. 0 : ( P  x ’f’) H N is an output function which defines 
directed arcs from transitions to places, and 

5.  MO : P +- :V is the initial marking. 

If I ( p ,  t )  = k ( O ( p ,  t )  = k ) .  then there exist k directed 
(parallel) arcs connecting place p to transition f. (transition 
t to place p ) .  If I ( p . t )  = 0 ( O ( p : / , )  = U), then there 
exist no directed arcs connecting p to t ( b  to p ) .  Frequently, 
in the graphical representation, parallel arcs connecting a 
place (transition) to a transition (place) are represented by 
a single directed arc labeled with its multiplicity, or weight 
k .  This compact representation of multiple arcs is shown in 
Fig. 2. 

By changing distribution of tokens on places. which may 
reflect the occurrence of events or execution of operations, 
for instance, one can study dynamic behavior of the modeled 
system. The following rules are used to govern the flow 
of tokens. 

Enabling Rule. A transition t is said to be enabled if each 
input place p of 1 contains at least the number of tokens equal 
to the weight of the directed arc connecting p to t .  
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(a)  Transition f I enabled. (b) Enabled transition tl fires. Fig. 3. 

p2 1 0 
Fig. 4. Petri net with an inhibitor arc 

P3 

P2 

Fig. 5 .  Self-loop removal 

Firing Rule: 

(a) An enabled transition f may or may not fire depending 
on the additional interpretation, and 

(b) A firing of an enabled transition t removes from each 
input place 1' the number of tokens equal to the weight 
of the directed arc connecting p to t .  It also deposits in 
each output place p the number of tokens equal to the 
weight of the directed arc connecting t to p .  

The enabling and firing rules are illustrated in Fig. 3. In 
Fig. 3(a), transition t l  is enabled as the input place p1 of 
transition t l  contains two tokens, and I ( p l !  t l )  = 2. The firing 
of the enabled tran5ition t l  removes from the input place p l  
two tokens as I ( p 1 .  t l  ) = 2, and deposits one token in the 
output place p 3 ,  O ( p 3 . f . 1 )  = 1, and two tokens in the output 
place p2,  O ( p 2 . f l )  = 2. This is shown in Fig. 3(b). 

The modeling power of Petri nets can be increased by 
adding the zero testing ability, i.e., the ability to test whether a 
place has no token. This is achieved by introducing an inhibitor 
arc. The inhibitor arc connects an input place to a transition, 
and is pictorially represented by an arc terminated with a small 
circle. A Petri net with an inhibitor arc is shown in Fig. 4. 
The presence of an inhibitor arc connecting an input place 
to a transition changes the transition enabling conditions. In 
the presence of the inhibitor arc, a transition is regarded as 
enabled if each input place, connected to the transition by 
a normal arc (an arc terminated with an arrow), contains at 

Fig. 6. Petri net inodel of a multirobot system. 

TABLE I 
1NTERPRI:TATION OF PI.ACI:S A N D  TRANSITIONS OF THE PETRI 

NET hfODtL  OF THE MULIIROBOT ASSEMBLY SYSTEM 

[%&e (with t o k e n L l r -  Interoretatioo I 

least the number of tokens equal to the weight of the arc, 
and no tokens are present on each input place connected to 
the transition by the inhibitor arc. The transition firing rules 
are the same as for normally connected places. The firing, 
however, does not change the marking in the inhibitor arc 
connected places. 

A Petri net is said to be pure or self-loop free if no place 
is an input place to and output place of the same transition. A 
Petri net that contains self-loops can always be converted to 
a pure Petri net as shown in Fig. 5. 

In order to illustrate how Petri nets can be used to model 
properties such as concurrent activities, synchronization, mu- 
tual exclusion etc., we consider a simple example of a mul- 
tirobot system. This system is represented by a Petri net 
model shown in  Fig. 6, and Table I. In this model, two robot 
arms perform pick-and-place operations accessing a common 
workspace at times to obtain or transfer parts. In order to 
avoid collision. it  is assumed that only one robot can access 
the workspace at a time. In addition, it is assumed that the 
common workspace contains a buffer with a limited space 
for products. This could represent an operation of two robot 
arms servicing two different machining tools, with one robot 
arm transferring semiproducts from one machining tool to the 
buffer, and the other robot atm transferring semiproducts from 
the buffer to the other machining tool. 

In this model, places p 1 , p 2 : p s  and transitions l l , t 2 ,  t 3  
model activities of robot arm E l l .  Places p4, p ; .  p~ and transi- 
tions t ~ ,  t s !  ts model activities of robot arm 11'2. Transitions t l  
and 14 represent concurrent activities of X1 and R2. Either 
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of these transitions can fire before or after, or in parallel 
with the other one. The access to the common workspace 
requires synchronization of the activities of the arms in order to 
avoid collision. Only one robot arm can access the common 
workspace at a time. This synchronization is accomplished 
by the mutual exclusion mechanism implemented by a subnet 
involving places p7.  p 3 , p 6  and transitions 1 2 ,  t 3 ,  t 5 .  t 6 .  Firing 
transition f 2  disables t5 ,  assuming t:, is enabled, and vice versa. 
Thus only one robot arm can access the common workspace at 
a time. In addition, i t  is assumed that the buffer space is “b.” 
Thus, for instance, if  pH is empty, then t2 cannot be enabled. 
This prevents R l  from attempting to transfer to the buffer a 
part when there is 110 space in the buffer. Also, 1?2 cannot 
access the buffer if there is no part in the buffer, or place p g  
is empty. 

111. PROPERTIES OF PETRI NETS 

Petri nets as mathematical tools possess a number of prop- 
erties. These properties, when interpreted in the context of 
the modeled system, allow the system designer to identify 
the presence or absence of the application domain specific 
functional properties of the system under design. Two types 
of properties can be distinguished: behavioral and structural 
properties. The behavioral properties are these which depend 
on the initial state, or marking, of a Petri net. The struc- 
tural properties, on the other hand, do not depend on the 
initial marking of a Petri net. These properties depend on the 
topology, or net structure, of a Petri net. In this section, we 
provide an overview of some of the most important, from 
practical point of view, behavioral properties. The focus on 
the behavioral properties is dictated by the space limitations 
of this tutorial. An extensive description of the structural 
properties, and the analysis methods can be found in [76]. 
The behavioral properties discussed in this section are reach- 
ability, boundedness, conservativeness, liveness, reversibility 
and home state. Descriptions of other properties such as 
coverability, persistence, synchronic distance, and faimess can 
also be found in [76]. 1861. 

A.  Reachability 

An important issue in designing distributed systems is 
whether a system can reach a specific state, or exhibit a par- 
ticular functional behavior. In general, the question is whether 
the system modeled with Petri nets exhibits all desirable 
properties, as specified in the requirements specification, and 
no undesirable ones. 

In order to find out whether the modeled system can 
reach a specific state as a result of a required functional 
behavior, it is necessary to find such a sequence of firings 
of transitions which would result in transforming a marking 
Ai,, to M z ,  where .W( represents the specific state, and the 
sequence of firings represents the required functional behavior. 
It should be noted that real systems may reach a given 
state as a result of exhibiting different permissible patterns 
of functional behavior. In a Petri net model, this should be 
reflected in the existence of specific sequences of transitions 

firings, representing the required functional behavior, which 
would transform a marking MO to the required marking M;. 
The existence in the Petri net model of additional sequences 
of transitions firings which transform A40 to hf; indicates 
that the Petri net model may not be reflecting exactly the 
structure and dynamics of the underlying system. This may 
also indicate the presence of unanticipated facets of the func- 
tional behavior of the real system, provided that the Petri net 
model accurately reflects the underlying system requirements 
specification. A marking M ,  is said to be reachable from a 
marking MO if there exists a sequence of transitions firings 
which transforms a marking MO to Mi. .4 marking M1 is said 
to be immediately reachable from a marking Af~~ if a firing 
of an enabled transition in h f ~ ~  results in marking MI. For 
instance, in the Petri net model of the multirobot assembly 
system shown in Fig. 6, the state in which robot arm R1 
performs tasks in the common workspace, with robot arm 
R2 waiting outside, is represented by the marking vector 
M i  = ( O , O , l . O .  l ,O:O,2.  l)T. Mi can be reached from the 
initial marking M(,, where 1140 = (1,O. 0 .  1. 0, 0 .  1. 3. 
by the following sequence of transitions firings--t 1 t 2  f ~ .  The 
marking M 1  = (0. I ,  0)  1 .0 .0 .  1,3, O ) T ,  which represents the 
state of the system in which robot arm h’l waits for the access 
to the common workspace and robot arm R2 performs tasks 
outside the commom workspace, is immediately reachable 
from the initial marking when transition tl  fires. It should 
be noted that in transitions t.1, and L 4  are both enabled. The 
set of all possible markings reachable from AZ,, is called the 
reachability set. and denoted by R(M0). This will be discussed 
in more detail in Section 4.1. The set of all possible firing 
sequences from M,, is denoted by L(hf ( , ) .  Thus the problem 
of identifying the existence of a specific state Mi,  the system 
can take on, can be redefined as the problem of finding if ’ 

M ;  E R(1Lf”). 

B. Boundedness and Safeness 

Places are frequently used to represent information stor- 
age areas in communication and computer systems, product 
and tool storage areas in manufacturing systems, etc. It is 
important to be able to determine whether proposed control 
strategies prevent from the overflows of these storage areas. 
The information storage areas can hold, without corruption, 
only a restricted number of pieces of data. In manufacturing 
systems, attempts to store more tools? for instance, in the 
tool storage area may result in the equipment damage. The 
Petri net property which helps to identify in the modeled 
system the existence of overflows is the concept of bound- 
edness. A Petri net is said to be I;-bounded if the number 
of tokens in any place p ,  where p E P, is always less or 
equal to I;  ( k  is a nonnegative integer number) for every 
marking M reachable from the initial marking M(,. M E 
R(M0). A Petri net is safe if it is I-bounded. A Petri net 
shown in Fig. 7 is safe. In this net 110 place can contain 
more then one token. An example of a Petri net which 
is unbounded IS shown in Fig. 8. This net is unbounded 
because place p 4  can hold an arbitrarily large number of 
tokens. 
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Fig. 7. Petri net that I \  safe. 

i^ p3 

L 

P4 

Fig. 8. Petri net that i \  unbounded 

C. Conservativeness 

In real systems, the number of resources in use is typically 
restricted by the financial as well as other constraints. If tokens 
are used to represent resources, the number of which in a 
system is typically tixed, then the number of tokens in a Petri 
net model of this system should remain unchanged irrespective 
of the marking the net takes on. This follows from the fact that 
resources are neither created nor destroyed, unless there is a 
provision for this to happen. For instance, a broken tool may 
be removed from the manufacturing cell, thus reducing the 
number of tools available by one. 

A Petri net is conservative if the number of tokens is 
conserved. From the net structural point of view, this can 
only happen if the number of input arcs to each transition 
is equal to the number of output arcs. However, in real 
systems resources are frequently combined together so that 
certain tasks can be executed, then separated after the task is 
completed. For instance, in a flexible manufacturing system an 
automatic guided vehicle collects a pallet carrying products 
from a machining cell, and subsequently delivers it to the 
unload station where the vehicle and pallet are separated. This 
scenario is illustrated in Fig. 9. Transition tl  models loading 
a pallet onto a vehicle; transition t 2  represents the pallet being 
delivered to the unload station and subsequently removed from 
the vehicle. Although the number of tokens in the net changes 
from two to one when ti fires, and then back to two tokens 
when f.2 fires, the number of resources in the system does not 
change. In order to overcome this problem, weights may be 

Pallet 

p3 , 3 P4 
"', ~ A G V + P a i l e t  I \ 

- 
AGV 

P -? P5 
Fig. 9. Petri net conservative wi th  rcspect to c c  = [l. 1 , 2 .  1. 11. 

P3 

t2 

tl 

t3 

Fig. 10. Petri net that is s t r idy  conservative. 

associated with places allowing for the weighted sum of tokens 
in a net to be constant. A Petri net is said to be conservative 
if there exists a vector W.  111 = [7u1~  1112, ....i wrrL],  where nr. is 
the number of places, and ~ ( p )  > 0 for each p E P, such 
that the weighted sum of tokens remains the same for each 
marking A4 reachable from the initial marking M,,. A Petri 
net is said to be strictly conservative if all entries of vector UJ 

are unity. The Petri net shown in Fig. 9 is conservative with 
respect to vector 71' = [l, 1 .2 .  1. 11 as the weighted sum of 
tokens in each marking is two. An example of a Petri net which 
is not conservative is shown in Fig. 8; place p~ can hold an 
arbitrarily large number of tokens. If a Petri net is conservative 
with respect to a vector with all elements equal to one. then 
the net is said to be strictly conservative. An example of a 
Petri net which is strictly conservative is shown in Fig. 10. 

D. Liveness 

The concept of liveness is closely related to the deadlock 
situation, which has been studied extensively in the context 
of operating systems. Coffman et al. [34] showed that four 
conditions must hold for a deadlock to occur. These four 
conditions are: 

1. Mutual exclusion: a resource is either available or allo- 
cated to a process which has an exclusive access to this 
resource. 

2. Hold and wait: a process is allowed to hold a resource(s) 
while requesting more resources. 

3 .  No preemption: a resource(s) allocated to a process 
cannot be removed from the process, until it is released 
by the process itself. 

4. Circular wait: two or more processes are arranged in a 
chain in which each process waits for resources held by 
the proce\s next in the chain. 

For instance, in a flexible manufacturing system, a deadlock 
occurs when the inputhutput buffer of a machining tool holds 
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Fig. 1 I .  

tl tt3 W w PI  
Petri net with different levels of liveness of transitions 

E. Reversibiliiy and Home Stute 

An important issue in the operation of real systems, such 
as manufacturing systems, process control systems, etc., is 
the ability of these systems for an error recovery. These 
systems are required to return from the failure states to the 
preceding correct states. This requirement is closely related to 
the reversibility and home state properties of a Petri net. A 
Petri net, for the initial marking MO, is said to be reversible if 
for each marking M in f?(i\4(l), MO is reachable from M. The 
home state property is less restrictive, and more practical, then 
the reversibility property of ;I Petri net. A Petri net state M; is 
said to be a home state if for each marking k.1 in R(M0) ,  Mi is 
reachable from M. The Petri net shown in Fig. 7 is reversible. 
The Petri net shown in Fig. 8 is nonreversible. 

a pallet with already machined products, and another pallet 
with products to be machined has been delivered to the buffer. 
Assuming that the buffer can hold one pallet only at a time, and 
an automated guided vehicle (AGV), for instance. has a space 
for one pallet, a deadlock occurs. The pallet with machined 
parts cannot be moved from the buffer to the AGV. The pallet 
with parts to be machined cannot be moved from the AGV 
to the buffer. In this example, all four conditions hold, with 
the buffer and AGV space for pallets regarded as resources. 
Unless there is a provision in the control software for deadlock 
detection and recovery, a deadlock situation. initially confined 
to a small subsystem. may propagate to affect a large portion 
of a system. This frequently results in a complete standstill 
of a system. A Petri net modeling a deadlock free system 
must be live. This implies that for all markings iVf, which 
are reachable from the initial marking MO, it  is ultimately 
possible to fire any transition in the net by progressing through 
some firing sequence. The Petri net shown in Fig. 10 is live. 
This requirement, however, might be too strict to represent 
some real system5 or scenarios which exhibit deadlock-free 
behavior. For instance, the initialization of a system can be 
modeled by a transition (or transitions) which fires a finite 
number of times. After initialization, the system may exhibit a 
deadlock free behavior. although the Petri net representing this 
system is no longer live as specified above. For this reason, 
different levels of liveness for transition 1, and marking M u ,  
were introduced. A transition t in a Petri net is said to be: 

LO-live (or dead) i f  there is no firing sequence in L(M0)  
in which f can fire, 
Ll-live (potentially firable) if f can be fired at least once 
in some tiring sequence in  L ( M o ) ,  
L2-live if t can be fired at least X: times in some firing 
sequence in f , ( A f ( ) )  given any positive integer k ,  
L3-live if f can be tired infinitely often in some tiring 
sequence in L(M(1).  and 
L4-live (or live) if  / is Ll-live (potentially firable) in 
every marking in X(A.;k,). 

Following this classification, a Petri net is said to be L%- 
live, for marking M(1, if every transition in the net is L,i-live. 
Different levels of liveness of transitions are shown in Fig. 1 1. 

In this example. transitions t u .  I1 ~ 1 2 ,  and /,:I are LO, L1. L2, 
and LS-live, respectively, and strictly. 

IV. ANALYSIS METHODS 
In the prelious section. we defined a number of proper- 

ties of Petri nets which are useful for analyzing modeled 
systems. An important issue to be considered during analysis 
is whether there exists one-to-one functional correspondence 
between the Petri net model and the original requirements 
specification; typically expressed in an informal way. The 
construction of Petri net models from informal requirements 
specifications is not a trivial task, which requires a great deal 
of modeling experience, as well as the knowledge of the 
techniques assisting in the model construction. As a result, 
a Petri net model may differ considerably from its original 
specification. This is especially true when large Petri net 
models of complex systems are involved. The existence of 
the one-to-one functional correspondence between an original 
requirements specification and its Petri net representation 
allows projection of the analysis results, obtained for the 
Petri net model. onto the original description. This provides 
feedback to the customers which can, in many instances, 
help the customers clarify their perception of the system. 
Another important issue to be addressed during the analysis 
stage is the completeness of the requirements specitication. In 
most cases, the requirements specification defines the external 
functional behavior of a system. This is typically expressed 
in terms of the system input output relationships. Inputs 
are generated by the environment of the system. Outputs 
are responses of the system to these inputs. If some inputs, 
generated by the environment of the system, are not included 
in the requirements specification, then the system will be 
unable to respond to these inputs properly when they occur 
during the system normal operation. The completeness of the 
requirements is especially important in the case of safety- 
critical systems. In these systems, the incompleteness of the 
requirements specification may lead to catastrophic events 
to occur in the environment of the system. For instance, 
the occurrence of unanticipated states in the operation of 
a nuclear reactor may result in the failure of the control 
system to respond to them properly, or at all, thus potentially 
leading to the reactor system failure. The consistency of the 
requirement specification is another issue to be considered 
during analysis. The inconsistency occurs when for a given 
uermissible. temDoral combination of inputs. a requirements 
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Fig. 12. A Petri net model. 

specification allows for two or more different permissible 
temporal combinations of outputs. It is mainly due to a 
vague, incomplete, and frequently incorrect perception of 
the system functionality. In  this paper, we are going to 
present an overview of two fundamental methods of analysis. 
One is based on the reachability tree, and the other on 
the matrix equation representation of a net. In addition to 
the two methods, a number of techniques were proposed 
to assist in the analysis of Petri net models. These ap- 
proaches allow for a systematic transformation of a Petri 
net, by reducing the number of places and transitions in a 
net, and at the same time preserving the properties such as 
boundedness, conservativeness, liveness, etc. Smaller nets are 
easier to analyze. Some of these techniques were discussed 
in 1761. 

A. The Covernhilir[v Tree 

This approach is based on the enumeration of all possible 
markings reachable from the initial marking MO. Starting with 
an initial marking Mu. one can construct the reachability set by 
tiring all possible transitions enabled in all possible markings 
reachable from the initial marking MO. In the reachability 
tree, each node is labeled with a marking; arcs are labeled 
with transitions. The root node of the tree is labeled with an 
initial marking MO.  The reachability set becomes unbounded 
for either of two reasons: The existence of duplicate markings, 
and a net is unbounded. In order to prevent the reachability 
tree from growing indefinitely large, two steps need to be 
taken when a tree is constructed. The tirst step involves 
eliminating duplicate markings. If on the path from the initial 
marking Mc, to a current marking M there is a marking 
M’, which is identical to the marking M ,  then the marking 
M ,  as a duplicate marking, becomes a terminal node. The 
occurrence of a duplicate marking implies that all possible 
markings reachable from M have been already added to the 
tree. For unbounded nets, in order to keep the tree finite, 
the symbol w is introduced. The symbol UI can be thought 

I t3 

(1, U, 1, 0IT 
Fig. 13. The coverability tree of the Petri net model shown in Fig. 9. 

of as the infinity. Thus, for any integer ‘TI,, w + 71 = w, 
w - n = w ,  < w. In this case, if on the path from 
the initial marking MO to a current marking M there is a 
marking M’, with its entries less or equal to the corresponding 
entries in the marking M ,  then the entries of hl, which are 
strictly greater than the corresponding entries of M’, should 
be replaced by the symbol w. In some paths the existence of 
markings with the corresponding entries equal or increasing 
(as we move away from the root node) indicates that the 
firing sequence which transforms M’ to M can be repeated 
indefinitely. Each time this sequence is repeated, the number 
of tokens on places labeled by the symbol w increases. The 
coverability tree is constructed according to the following 
algorithm: 

1.0) Let the initial marking MO be the root of the tree 

2.0) While “new” markings exist do the following: 
3.0) Select a “new” marking M.  
3.1) If M is identical to another marking in the tree, 

then tag A 4  “old,” and go to another “new” marking. 
3.2) If no transitions are enabled in M ,  tag M “terminal.” 
4.0) For every transition t enabled in marking M do 

the following: 
4.1) Obtain the marking M‘ which results from firing 

1. in M .  
4.2) If on the path from the root to M .  there exists a 

marking M” such that M’(p)  2 M”(p)  for each 
place p ,  and M’ # A!”, then replace M’(p)  by w 
for each p .  wherever M ’ ( p )  > M”(p). 

labeled t ,  and tag M‘ “new.” 

and tag it  “new.” 

4.3) Introduce as a node, draw an arc from M to M’ 

The following exainple will illustrate the approach. Con- 
sider the net shown in Fig. 12, and its coverability tree 
in Fig. 13. For the given initial marking, the root node is 
MO = ( l , O , L , O ) ’ .  In this marking, transition I - 3  is enabled. 
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When t 3  fires a new marking is obtained: MI = (1,O. 0, l)T. 
This is a “new” marking in which transition t 2  is enabled. 
Firing 12 in M I  results in M 2  = (1.1. l , O ) T .  Since h f 2  = 
(1.1, l , O ) T  2 Ad,, = ( l , O ,  l,O)T, the second component 
should be replaced by the symbol w .  This reflects the fact 
that the firing sequence t 3 t 2  may be repeated arbitrarily 
large number of times. In marking M 2  = ( l , ~ , l , O ) ~  two 
transitions are enabled: transition 1 1  and transition t 3 .  Firing 
b ,  results in marking AT3 = ( 1 , ~ . 0 , 0 ) ~ ,  which is a “ter- 
minal” node. Firing t 3  results in a “new” marking MA = 
(L,3,0:  l ) T ,  which enables transition f ~ .  Firing / 2  in A44 
results in an “old” node: , I f5  = (1: w. 1, O ) T  which is identical 
to M 2 .  

A number of properties can be studied by using the cov- 
erability tree. For instance, if any node in the tree contains 
the symbol U ,  then the net is unbounded since the symbol w 
can become arbitrarily large. Otherwise, the net is bounded. 
If each node of the tree contains only zeros and ones, then 
the net is safe. A transition is dead if it does not appear 
as an arc label in the tree. If a marking M is reachable 
from a marking Ala, then there exists a node Ad’, such that 
A4 5 M’. However, since the symbol w can become arbitrdrily 
large, certain problems, such as coverability and liveness, 
cannot be solved by studying the coverability tree only. For a 
bounded Petri net, the coverability tree contains, as nodes, all 
possible markings reachable from the initial marking MO. In 
this case, the coverability tree is called the reachability tree. 
For a reachability tree any analysis question can be solved by 
inspection. 

B. The Incidence Matrix and Stute Equation 

An alternative approach to the representation and analysis of 
Petri nets is based on matrix equations. In this approach matrix 
equations are used to represent dynamic behavior of Petri 
nets. The fundamental to this approach is the incidence matrix 
which defines all possible interconnections between places and 
transitions in a Petri net. The incidence matrix of a pure Petri 
net is an integer r!, x 7 n  matrix A, where 71 is the number 
of transitions. and 7ri. is the number of places. The entries of 
the incidence matrix are defined as follows: U;,, I= (I,; - a;, 
where (I,: is equal to the number of arcs connecting transition 
I ,  to its output place p ,  ((1,; = O(p, .  t L ) ) ,  and (1;; is equal to 
the number of arcs connecting transition t i  to its input place 
pJ ( a ,  = l ( p , .  t , ) ) .  When transition t ;  fires, U,:. represents 
the number of tokens deposited on its output place; p ) ,  
represents the number of tokens removed from its input place; 
p j .  a i j  represents the change in the number of tokens in place 
p,.  Therefore, transition I ,  is said to be enabled in marking 
121 if 

For Petri nets with self-loop?, aLJ = 0 for a place p ,  and 
transition t ,  which belong to a self-loop. For this reason, in 
order to make sure that the incidence matrix properly reflects 
the structure of a Petri net, the net is assumed to be pure, or 

made pure by introducing two additional places (see Fig. 5) .  
The state equation for a Petri net represents a change in the 
distribution of tokens on places (marking) as a result of a 
transition firing. This equation is defined as follows: 

:Lfk is an rri x 1 column vector representing a marking n / ! k  

immediately reachable from a marking M - 1  after firing 
transition t i .  The k-th firing vector u k ,  an ‘rt. x 1 column 
vector, has only one nonzero entry. This entry. a 1 in the 
i-th position, represents a transition t ;  firing in the k-th firing 
of the net firing sequence starting with an initial marking M”. 
This entry corresponds to the i-th row of the incidence matrix 
A which represents a change of a marking as a result of a 
firing transition t,. The matrix equation is useful in studying 
the reachability problem. However, this issue is outside the 
scope of this tutorial. For details see [76], 181 1, 1861. 

Two concepts related to the incidence matrix are especially 
useful in studing properties of Petri net models. They are 
T-invariant. and P-invariant. 

An integer solution :I‘ of A T . r :  = 0 is called a 7’-invariant. 
The nonzero entries in a ?’-invariant represent the firing 
counts of the corresponding transitions which belong to a 
firing sequence transforming a marking Ad,] back to MO. 
Although a ’I -invariant states the transitions comprising the 
firing sequence transforming a marking M[, into AT[,, and the 
number of times these transitions appear in  this sequence, it 
does not specify the order of transitions firings. 

An integer solution ;i/ of l l y  = 0 i s  called a P-invariant. 
The P-invariants can be explained intuitively in the following 
way. The nonzero entries in a P-invariant represent weights 
associated with the corresponding places so that the weighted 
sum of tokens on these places is constant for all markings 
reachable from an initial marking. 

The subset of places (transitions) corresponding to the 
nonzero entries of a ?’-invariant (P-invariant) is called the 
support of an invariant, and denoted by I [:/;I 1 ( 1  I;yl I ) .  A support 
is said to be minimal if no proper nonempty subset of the 
support is also a support. 

C. An Example 

In  this section, we demonstrate how the coverability tree 
and invariant based techniques can be used to analyze the 
Petri net model of the multirobot system which is shown in 
Fig. 6. Without losing the discussion generality, we assume 
b = 1.  The coverability tree, in this case a reachability tree, is 
shown in Fig. 14. The incidence matrix of this net is shown 
in Fig. 15. 

The P-invariants obtained for this net are as follows: 

y 1  = (1 1 1 0 0 0 0 0 0 )T 

, t / 2 = ( 0  0 0 1 1 1 0 0 o ) =  
y j  = ( O  0 1 0 0 1 1 0 O)T 

. l / 4 = ( 0  0 0 0 0 0 0 1 l ) ?  
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M o = ( 1 0 0  1 0 0 1  10) 

M 4 = ( O 0 1  1 0 0 0 o i ) ~  M 3 = ( 0 1 0 0 1 0 1  

M g =  (0 1 0 0  1 0 1 0  I)T M ~ o = ( l O O O O 1 O 1 O ) T  

k y \  
MO Mi1 = (0 1 0 0 0  1 0  1 O)T 

M I  

Fig. 14. Coverability tree of the Petri nrl model shown in Fig. 3.  

PI P2 P3 P4 PS P6 ?‘7 P8 P9 

- 1 1 0 0 0 0  0 0 0  
0 - 1  1 0  0 0 - 1 - 1  1 
1 0 - 1 0 0 0 1 0 0  
0 0 0 - 1 1 0 0 0 0  
0 0 0 0 - 1  1 - 1  1 - 1  
0 0 0 1 0 - 1 1 0 0  

Fig. 15. 
cell. 

Incidence matrix of the Petri net model of (he multirobot assembly 

The following are the corresponding invariant supports: 

l l ? / l l  = {P1~1)2?1):3) 

l lvnll = {p4 .P; .PC; )  

I I : Y ~  {;us.Ps,P~} 
/ / : ? / - 1 l /  = ( P 8 ; P Y ) .  

Boundedness and Sajeness: The Petri net shown in Fig. 6 
is bounded. This is evident from the reachability tree: no 
marking reachable from the initial marking MO contains the 
w symbol. In addition, since for each marking, no entry is 
greater than one, the net is safe. These properties can be also 
easily established using P-invariants. Since each place in the 
net belongs to some invariant support, and the net starts from 
a bounded initial marking, the net i s  bounded. In addition, 
since the token count in each invariant support in the initial 
marking is one, the net is also safe. Two propcrtics related 
to the operation of thc actual system can be deduced from 
the boundedness propel-ty of the Petri net model. There is no 
bufl‘er overflow, no provision for R1 to access the buffer area 
when it is full. Also, there is no buffer underflow, no provision 
for IC2 to access thc buffer area when it  is empty. When 
using the reachability tree, these properties follow from thc 

Fig. 16. 

net safeness. The entries i n  each marking, which represent the 
number of tokens in places p8 and p y ,  are either zero or one. 
Using invariants: The invariant support ))y/-1 1 )  covers places pa,  
and p9. Since the token content in lIy/-11/ in the initial marking 
is one, there is only one token either on p x ,  or p y  at a time. 
Therefore there IS neither buffer overflow nor underflow. 

ConservativenP.F.v.ie.~.~: The Petri net shown in Fig. 6 is conser- 
vative. From the reachability tree, the net is conservative with 
respect to vector ‘tu = [l, 1 .2 .1 ,1 ,2 ,  1: 1: 11. The weighted 
sum of tokens remains the same for each marking reachable 
from the initial marking, and equals four. Using invariants: The 
token content in each invariant support in the initial marking is 
one. The invariant supports 11y1II, Il;ylll, and Ily411 are mutually 
exclusive. The invariant supports II:qI 1 1  and 11;y:J contain place 
p:$ as acommon element. The invariant supports l l ~ y ~ l l  and /l;y311 
contain place as a common element. Thus the weight of 
places p s  and p1; should be two for the net to be conservative. 
The implication of this property is that the number of robot 
arms operating in the assembly system is two and does not 
change. Also, the number of the space resources in the buffer 
area is one and does not change. 

Liveness: The Petri net shown in Fig. 6 is live; all transi- 
tions are live. 

Fig. 16 shows a reachability graph of the Petri net of Fig. 6. 
The reachability graph shown in Fig. 16 is a directed graph 
consisting of a set of nodes, and a set of directed arcs. The set 
of nodes represents all distinct labeled nodcs in the reachability 
trec. The set of directed arcs, where each arc is labeled with 
a transition, represents all possible transitions between all 
distinct labeled nodes in the reachability tree. 

By inspection. the net is U-live, since for any marking 
reachable from making M,,, it is possible to ultimately tire any 
transition by executing some firing sequence. The invariants 
could be used to demonstrate “manually” that the net is live. 
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However, for the net of this size, this would be a tedious 
procedure. As the net is live, the system cannot come to a 
standstill where no operation is possible. 

Reversibility: The Petri net shown in Fig. 6 is reversible. 
Also by inspection, using the reachability graph, IW" is reach- 
able from any marking AT E R(M0).  

V. PERFORMANCE ANALYSIS 

The development of man-made systems requires that both 
functional and performance requirements are met. Depending 
on the development stage of a system, the knowledge of 
either an approximate or exact (or both) performance may be 
required. For example, at the design stage, the approximate 
performance of the alternative design models is required in 
order to eliminate these proposals which are highly unlikely 
to meet the performance requirements when fully developed 
and implemented. Analytical techniques play an important role 
at this stage. They allow the designer to obtain the required 
performance measures, involving a relatively small time in- 
vestment needed for the model construction and its solution. 
The selected design altematives are then refined by increasing 
the level of details in order to include in the model the actual 
operational policies and time characteristics. As a result, the 
model complexity or the presence of heuristic algorithms may 
prohibit the use of the analytical techniques. The discrete- 
event simulation is, then. the only viable alternative for the 
performance evaluation. Although, it is an expensive and time 
consuming technique. 

The ordinary Petri nets do not include any concept of time. 
With this class of nets, i t  is possible only to describe the logical 
structure of the modeled system, but not its time evolution. 
Responding to the need for the temporal performance analysis 
of discrete-event systems, time has been introduced into Petri 
nets in a variety of ways. In this section two fundamental 
types of timed Petri nets are discussed in the context of the 
performance evaluation. These are deterministic timed Petri 
nets, and stochastic ones. An example of a simple production 
systems is used to illustrate the basic solution techniques for 
these classes of nets. The focus of the discussion in this section 
is on the analytical performance evaluation of Petri net models. 
This choice was motivated mainly by the recognition of the 
importance of using the analytical techniques for performance 
evaluation. 

A.  Deterministic Timed Petri Nets 

Time may be associated with transitions (timed transition 
Petri net-TTPN). TTPN's can be classified into three-phase 
tiring TTPN's, and atomic firing TTPN's. In the former class, 
tokens are removed from the input places when a transition 
becomes enabled. The transition fires after a certain period of 
time (time delay), depositing tokens on the output places. In 
the latter class, tokens remain on the input places of a transition 
which is enabled. After a certain period of time (time delay), 
the transition fires removing tokens from the input places, and 
deposits tokens on the output places. 

The presence of the conflict structures (a structure involving 
a place having two, or more output transitions) in a Petri net, 
execution of which leads to conflicts (in the conflict structure 
only one transition can fire, others become disabled), requires 
a conflict resolution mechanism to be introduced. Since this 
mechanism is, typically, based on a probabilistic function, the 
net becomes stochastic. For this very reason, the use of the 
deterministic timed Petri nets for the performance evaluation, 
as reported to date, has been restricted to the choice-free or 
conflict-free nets, which can be further modeled as marked 
graphs, or event-graphs. 

A marked graph is a PN (P ,  T ,  I ,  0, M O )  such that 'dp E 
P,t E T ,  I ( p , t )  5 1. O ( p , t )  5 1, and given any p E P,  
I{t E T :  O ( p , t )  = 1}1 = 1, and I{t C: T :  I ( p , t )  = 1}1 = 1. 

In a marked graph, each place has exactly one input tran- 
sition and exactly one output transition. Thus no conflict is 
possible. The marked graph models are suitable to represent 
and study performance of the asynchronous concurrent sys- 
tems which do not involve conflicts [U], [95]. This class 
of nets has been extensively used to model and analyze 
performance of the industrial automated systems such as job- 
shop production systems, robotic assembly cells, and flexible 
manufacturing cells [43], [49], [ l l O J .  

A timed marked graph is a marked graph ( P , T . I , O ,  
Mo,y.r), where y: P h I?+ is the delay function, R+ is 
the set of nonnegative real numbers, and 7 : T H R+ is the 
firing time function. 

In a timed marked graph, deterministic time delays are 
associated with places and transitions. A token in a place. with 
an associated delay time, can be available or not-available 
to enable its output transition. The previous tiring rules for 
ordinary PN's are expanded to include the following: 

1 .  At any time instance, a transition t becomes enabled if 
each input place p of t contains at least one available 
token, 

2 .  Once transition t is enabled, it starts tiring by removing 
one token from each input place. It completes firing 
after the time delay ~ ( t ) ,  and deposits one token into 
each output place p .  These tokens become available after 
time ~ ( p ) .  

A marked graph is strongly connected if there is a directed 
path from any node to any other node, where a node can be 
either a transition or place. 

An elementary path is a sequence of nodes: z1x2...zn, 
TI, 2 1, such that there is an arc from .ci to .x,+l, where 
1 5 ,i < r i .  If 71 > 1, :I;;  = : K ~  implies that 1: = j .  1 5 , i : ; j  5 71.  

An elementary loop, or circuit, is a sequence of nodes: 
:c1:c2 . . . .c,, ri > 1, such that z; = :I; .; ,  where 1 5 ,I < j 5 7 1 ,  

implies that i = 1 and j = TI,. 

The fundamental approach to studying timed marked graphs 
is based on two concepts: The total time delay in a loop, 
and the total number of of tokens in a loop. A strongly- 
connected marked graph consists of a number of elementary 
loops. The total time delay in a loop is obtained as a sum 
of delays introduced by all transition and places comprising 
the loop. The total number of tokens in a loop is obtained 
as a sum of lokens present in the places which belong to the 
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Robot 1 Machrne 1 Robot 2 Machine2 - 

Fig. 17. 
convcyers. 

A production line consisting of  two machines, two robots, and two 

Slots in Conveyor 
M I  dvailable available M2 available 

v 

K 1  avniiahle RZ available ,' 
Fig. 18. Deterministic tirned Petri net model I'or the production line 

loop. Then, the minirnum cycle time of the marked graph is 
1851. 1951: 

K = I l l ~ t X { U , / N ,  } 

where D, is the time delay associated with the i-th loop. l l i i  

is the total number of tokens present in  the places of the i-th 
loop. The ratio D L / N ,  is called the cycle time of loop %. 

The upper and lower cycle times can be derived for the 
timed (deterministic or random) marked graphs using the 
methods proposed in 1201 and 1431. Linear programming was 
demonstrated to be ii computationally efficient method for 
computing the cycle times 1201, 1491, 1751. 

An example of a siniple production line will be used 
to demonstrate the method for obtaining cycle times of a 
marked graph. 

The production line consists of two machining tools (A41 
and M 2 ) ,  two robot arms, and two conveyors. Each machining 
tool is serviced by a dedicated robot arm which performs 
load and unload tasks. One conveyor is used to transport 
workpieces, a maximum of two at a time. The other conveyor 
is uaed to transport empty pallets. There are three pallets 
available in  the system. The arrangement is shown in  Fig. 17. 
Each workpiece is machined on A41 and M 2 ,  in this order. 
The machining on 1\41 takes I O  time units. The machining on 
M 2  takes 16 time units. The load and unload tasks require 1 
time unit. The conveyors transportation times are negligible. 

The deterministic timed Petri net model of this system is 
shown in Fig. 18. Table 11 provides a description of the places 
and transitions involved, as well as the associated time delays. 
The initial marking of the net is (3000121 ll)T. The Petri net 
model contains four loops. The time delays associated with 
these loops, as well as their token contents, are shown in  
Table 111. Then, the minimum cycle time is 18 time units, as 
determined by the loops 1 ,pA14p;(or p 9 ) f : 3 .  This means that i t  
takes a miiiimum of I8 time units to trdnsform a raw workpiece 
into a final product. 

TABLE 111 
LOOPS AND THEIR I)EI.AYS, TOKEN S[rus. A N D  Cuc1.1: T I M ~ S  FOR FIG 18 

I t  should be noted that the increase in the number of 
available pallets is not going to make the minimum cycle time 
of the system any shorter. This is because of the time involved 
in machining at M 2 .  Thus, Petri net analysis can also help 
decide the appropriate number of pallets and/or fixtures. 

B. Stochastic Tirned Petri Nets 

When time delays are modeled as random variables, or 
probabilistic distributions are added to the deterministic 
timed Petri net models for the conflict resolution, stochastic 
timed Petri net models are yielded. In such models, it 
has become a convention to associate time delays with 
the transitions only. When the random variables are of 
general distribution or both deterministic and random 
variables are involved, the resulting net models cannot be 
solved analytically for general cases. Thus simulation or 
approximation methods are required. The stochastic timed 
Petri nets in which the time delay for each transition is 
assumed to be stochastic and exponentially distributed are 
called stochastic Petri nets (SPN) 1731. The SPN models 
which allow for immediate transitions, i.e., with zero time 
delay, are called generalized SPN (GSPN) 1681, 1691. Both 
models, including extensions such as priority transitions, 
inhibitor arcs, and probabilistic arcs can be converted into 
their equivalent Markov process representations, and analyzed 
analytically. 

To demonstrate the methodology, we consider the example 
of the system shown in Fig. 17. Suppose that the machining 
tool A41 is faster than M 2 ,  however subject to failures. A42 
and the two robots are failure-free. Given the processing rates 
of the machining tools and robots, as well as the failure and 
repair rates of M I ,  we are interested in obtaining the average 
utilization of A f t ,  and the production rate of the system 
(throughput), assuming that only one pallet is available. 
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M1 idle Slots in Conveyor available 

(a) 

&=(100012) ' -  (O1OOO2)T ~ M 2 = ( O 0 1 0 1 1 ) T  
f 4  1 I t 5  

M3= (0 0 0 1 0 2)T 

(b) 

( C )  

Fig. 19. 
bility graph. (c) Markov chain. 

(a) Stochastic Petri net model for the production line. (b) Reacha- 

The SPN model of the system is shown in Fig. 19(a). A 
number of modeling assumptions were made for the conve- 
nience of the presentation: 

1. The tasks performed by M 2  and R2  were aggregated 
into a single transition representing loading, processing 
and unloading at M 2 .  

2 .  The time associated with the unloading tasks performed 
by R1 is incorporated into transition t a .  

3. The failure-repair loop is added to MI .  
4. The time delays are associated with transitions only. 
In the model, A; is used to represent the firing rate of a 

transition t , .  A firing rate of a transition equals to the reciprocal 
of the average firing delay time of the corresponding event or 
operation. The description of places and transitions is given in 
Table IV, together with the adopted values of the firing rates. 

The reachability graph of the model is shown in Fig. 19(b). 
The graphical representation of the corresponding embedded 
continuous time Markov chain is shown in Fig. 19(c). In this 
representation, the links between states are labeled with the 
firing rates of the corresponding transitions. 

The transition rate matrix ( ~ . ~ . , ) ( i , , j  = 0, 1: 2 :  3 )  for the 
embedded continuous time Markov chain, which is shown in 
Fig. 19(c), is as follows: 

-A1 A1 

0 -A2  -X.1 A: ::j c =  1 0 -A3 0 . A 3 

0 A;, 0 -A;, 

The steady-state probabilities, denoted as 7 r 1 ,  can be ob- 
tained by solving the following equations: 

(TO 7r1 7r2 T;3)C = 0 

TO + 7r1 + 7r2 + 7r:3 = 1. 

TABLE IV 
INTERPRETATION . ~ N D  FIRING RATES OF PLACES A N D  TRANSITIONS I N  FIG. 19(a). 

Place Interpretation 
pl Workpieces and pallets avadable 
pz M I  processing a workpiece 
p3  Workpiece ready for processing at M2 

M I  in repair 

~ ~ ~ ! ~ ! k t s  available 
Firing Rate 

Processing and unloading involving M1, and RI 

M1 breaks down AI = 0.5 
A 5  = 4 

~- 
M I  is repaired 

This yields 

7 i ,  = X 2 X 3 X j / X .  

TL' = X1X2X5/X.  

7r1 == X1X3X5/X.  

7r3 == X1X3X.1/X 

where X = X z X 3 X j  + X l X 3 X j  + X1X:!X5 + XlX: jX4.  
When using the firing rates from Table IV, and the derived 

formulas for the steady-state probabilities, the following values 
are obtained 70 = 0.05, 7r1 = 0.40, 7r;: = 0.50, and 7r3 = 0.05. 

I .  The M 1 executing a task is modeled by the presence of 
a token on place p'. This corresponds to the marking 
M1, and state 7 r l ,  The expected utilization of M1 is 
then 40%. 

2. The completion of a product is modeled by firing tran- 
sition / 3 .  This transition is enabled in marking h f 2 .  

Thus, the system production average rate is given by 
the product of the probability that t3 is enabled and the 
firing rate of tJ, i.e., ~ 2 X : j  = 2.0 workpieces/time unit. 

The analysis of a Markov model may involve the steady- 
state (as shown in the example) or transient analysis (the 
study of the system evolution from its initial state to the 
steady state), or both depending on the requirements and 
the Markov process itself. For example, if the net is not 
deadlock-free, i.e., the underlying Markov process has an 
absorbing state( s), then the steady-state analysis makes no 
sense. General-purpose software packages are available for 
solving the above stochastic net models, including GreatSPN 
[30] and SPNP 1321. 

VI. PETRI NETS: APPLICATIONS PROSPECTS 

The development of Petri nets has been, to a large extent, 
motivated by the need to model the industrial systems. Or- 
dinary Petri nets are not always sufficient to represent and 
analyze complex industrial and other systems. This prompted 
the development of new classes of nets, some of which are 
introduced briefly in this section. 

Tokens in  the ordinary nets have no identity. This poses 
some problems for modeling systems such as manufacturing 
and communication systems, which require the physical re- 
sources or messages, if represented by tokens, to have identity. 
Without this identity, i t  is impossible to trace the flow of 
different resources or messages in the system. A potential 
solution is to construct a model in such a way that the flow of 
each resource or message is associated with a dedicated subnet. 
Since the resources or messages share, in most cases, the same 
system, all these subnets are identical. This approach increases 
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the graphical complexity of the model. In order to address 
this issue, Petri nets which allow for tokens to have distinct 
identity were proposed. These nets, referred to as high-level 
Petri nets, include predicate-transition nets [45 1, colored nets 
[56], and nets with individual tokens 1871. In high-level Petri 
nets, a token can be a compound object carrying data. This 
data can be of arbitrary complexity involving integers, reals, 
text strings, records, lists and tuples. A detailed discussion of 
this class of nets is beyond the scope of this paper. However, it 
should be noted that ordinary and high-level Petri nets have the 
same descriptive power. High-level Petri nets provide much 
better structuring facilities than ordinary nets. The colored 
and predicate-transition nets are almost identical with respect 
to their description and simulation. However, there are some 
considerable differences with respect to formal analysis. The 
colored Petri nets were used in numerous application areas. 
These areas include communication protocols [53] ,  production 
systems 1701, VLSI [92], etc. An important development in the 
area of high-level Petri nets was the introduction of object- 
oriented Petri nets, which are described in detail in 1941. 
Object-oriented Petri nets can be considered as a special kind 
of high level Petri nets which allow for the representation 
and manipulation of an object class [ 161. In this class of nets, 
tokens are considered as instances or tuples of instances of 
object classes which are defined as lists of attributes [102]. 
This type of net was used to model and analyze FMS systems 
121, [IO],  assembly tasks [SI, and assembly systems [ I ] .  

The recognition of the need for the qualitative specification 
of the industrial control, as well as the need for representing 
approximate and uncertain information has led to the devel- 
opment of various types of fuzzy Petri nets. The definitions 
of these nets, to a large extent, were influenced by the 
various application areas. Fuzzy Petri nets have been used for 
knowledge representation and reasoning [29], [44], [66]. Fuzzy 
Petri nets (Petri nets with objects [94]) have been also used to 
model monitoring and control of a FMS system [ I O l ] .  Fuzzy 
Programmable Logic Controllers were modeled in [SO]. Task 
sequence planning in robotic assembly systems using fuzzy 
Petri nets was discussed in 1211. 

Ordinary Petri nets are not powerful enough for representing 
and studying some of the important properties of concur- 
rent systems, such as eventuality (certain transitions must 
eventually fire; certain places must eventually have tokens), 
and fairness (if a transition becomes firable infinitely often, 
then it  must fire infinitely often), for instance. In order to 
address these issues, temporal Petri nets were introduced. In 
this class of nets, the timing constraints are represented by the 
operators of a variant of the propositional temporal logic of 
linear time. Typical operators used in this class of nets are 
next. henceforth, eventually, until, etc. Temporal Petri nets 
were used to model and analyze a handshake daisy chain 
arbiter 1971, and the alternating bit protocol [98]. The ability 
of temporal Petri nets to express eventuality makes this model 
suitable to represent and study the external functional behavior 
of systems. This functionality is expressed in terms of the 
input-output relationship, i.e., if a certain input pattern has 
been established, than eventually a certain output pattern will 
be generated. In 11 121. a method was proposed which allows 

for the construction of nets realizing the external functionality 
using less places and transitions then the original models. 
This allows for the construction of the verification models of 
complex systems using less places and transitions, and thus 
reducing the difficulty of the formal verification tasks. 

Although attempts to combine Petri nets with other tech- 
niques, such as neural networks, fuzzy logic, etc., seem to be 
on the increase, it appears that the use of Petri nets is still 
restricted to research laboratories and academic institutions. 
This situation, to a large extent, results from the lack of 
widely available inexpensive software tools suitable for the 
development of industrial type of systems. These types of tools 
would be required to provide facilities for dealing with the 
application domain specific problems at a relatively skill-free 
level which would not require the knowledge of Petri nets, 
and the analysis methods. The facility for translating Petri net 
models to the executable code will be also essential. They 
will allow for rapid prototyping of the developed systems in 
the operational environment. In the past few years, a large 
number of tools have been reported in the Petri net literature. 
However, a majority of these tools are used mostly for research 
and educational purposes. An overview of some of the Petri 
net tools can be found in 1401. 

Another reason why the use of Petri nets is largely confined 
to academic and research institutions is the difficulty involved 
in constructing Petri net models. Constructing Petri net models 
of systems, especially large scale systems, is not a trivial 
task. It requires a great deal of experience. No methodology 
is available yet, which would allow for a fully automatic 
construction of Petri net models. From our observations, in 
most cases, Petri net models are constructed in an ad hoc 
manner. However, attempts have been recently made to make 
this particular approach more systematic. These were reported 
in [381, [ 1 1  1 1 .  In the past two decades, numerous approaches 
to the systematic construction of Petri net models have been 
proposed, and the work in this area still continues. These 
approaches, using the terms of software engineering, can 

ified into bottom-up, top-down, and hybrid 
approaches [ 1091, [ 1 I I I .  A comprehensive discussion of these 
approaches can be found in [55]. The reuse of Petri net 
models is also restricted. This is mainly due to the fact 
that Petri net models are, typically, constructed on a one-off 
basis. The development is, in most cases, not supported by 
proper documentation. It is clear that if Petri nets were to 
be widely used, especially by the industry people, methods, 
and the supporting tools, allowing for an automatic or semi- 
automatic construction of Petri net models from requirements 
specifications would have to be developed. In the past few 
years, a number of approaches have been reported which allow 
for the automatic construction of restricted classes of Petri net 
models from requirements specifications expressed using pro- 
duction rules, flow diagrams, 5tate machines, temporal logic, 
application domain dependent semi-formal languages, etc. 
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