
IEEE. TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 41, NO. 6, DECEMBER 1994 561

Petri Nets and Industrial Applications: A Tutorial
Richard Zurawski and MengChu Zhou

Abstract-This is a tutorial paper on Petri nets. Petri nets, as a
graphical and mathematical tool, provide a uniform environment
for modelling, formal analysis, and design of discrete event
systems.

The main objective of this paper is to introduce the fundamen-
tal concepts of Petri nets to the researchers and practitioners,
both from academia and industry, who are involved in the work in
the areas of modelling and analysis of industrial types of systems,
as well as those who may potentially be involved in these areas.

The paper begins with an overview of applications of Petri
nets, mostly industrial ones. Then, it proceeds with a description
of Petri nets, properties, and analysis methods. The discussion
of properties is put in the context of industrial applications. The
analysis methods are illustrated using an example of a simple
robotic assembly system. The performance analysis, using Petri
nets, is discussed for deterministic and stochastic Petri nets. The
presented techniques are illustrated by examples representing
simple production systems. In addition, the paper introduces
high-level Petri nets, fuzzy Petri nets, and temporal Petri nets.
This is done in the context of application prospects. The paper
also briefly discusses some of the reasons restricting the use of
Petri nets, mostly, to academic institutions.

I. INTRODUCTION

HE growth in the complexity of modem industrial sys- T tems, such as production, process control, communication
systems, etc., creates numerous problems for their developers.
In the planning stage, one is confronted with increased ca-
pabilities of these systems due to the unique combination of
hardware and software. which operate under a large number
of constraints arising from the limited system resources. In
view of the capital intensive and complex nature of modem
industrial systems, the design and operation of these systems
require modeling and analysis in order to select the optimal
design alternative, and operational policy. It is well-known
that flaws in the modeling process can substantially contribute
to the development time and cost. The operational efficiency
may be affected as well. Therefore special attention should
be paid to the correctness of the models that are used at all
planning levels.

Petri nets, as graphical and mathematical tools, provide
a uniform environment for modeling, formal analysis, and
design of discrete event systems. One of the major advantages
of using Petri net models is that the same model is used
for the analysis of behavioral properties and performance

Manuscript received Decemher 12, 1993; revised July 22, 1994. Partial
financial support was given hy the Center for Manufacturing Systems at the
New Jersey Institute of Technology.

R. Zurawski is with Laboratory for Robotics k Intelligent Systems.
Swiburne University of Technology, Melbourne. Vic. 3122. Australia.

M. C . Zhou is with the Laboratory for Discrete Event Systems, Department
of Elcctrical and Computer Engineering, New Jcrsey Institute of Technology.
Newark, NJ 07102 USA.

I E t E Log Number 9405099.

evaluation, as well as for systematic construction of discrete-
event simulators and controllers. Petri nets were named after
Carl A. Petri who created in 1962 a net-like mathematical tool
for the study of communication with automata. Their further
development was facilitated by the fact that Petri nets can
be used to model properties such as process synchronization,
asynchronous events, concurrent operations, and conflicts or
resource sharing. These properties characterize discrete-event
systems whose examples include industrial automated systems,
communication systems, and computer-based systems. These,
and other factors discussed in this paper, make Petri nets a
promising tool and technology for application to Industrial
Automation.

Petri nets as graphical tools provide a powerful commu-
nication medium between the user, typically requirements
engineer, and the customer. Complex requirements specifi-
cations, instead of using ambiguous textual descriptions or
mathematical notations difficult to undersland by the customer,
can be represented graphically using Petri nets. This combined
with the existence of computer tools allowing for interactive
graphical simulation of Petri nets, puts in hands of the develop-
ment engineers ii powerful tool assisting in the development
process of complex systems.

As a mathematical tool, a Petri net model can be described
by a set of linear algebraic equations, or other mathematical
models reflecting the behavior of the system. This opens a
possibility for the formal analysis of the model. This allows
one to perform a formal check of the properties related
to the behavior of the underlying system, e.g., precedence
relations amongst events, concurrent operations. appropriate
synchronization, freedom from deadlock, repetitive activities.
and mutual exclusion of shared resources, to mention some.
The simulation based model validation can only produce a
limited set of states of the modeled system. and thus can only
show presence (but not absence) of errors in the model, and its
underlying requirements specification. Tht: ability of Petri nets
to verify the model formally is especially important for real-
time safety-critical systems such as air-traffic control systems.
rail-traffic control systems, nuclear reaclor control systems.
etc. Petri nets %ere used to model real-time fault tolerant
and safety-critical systems in [I I]-[121, 1651. Fault detection
and in-process monitoring were modeled and analyzed in
1271, 1961, I l O l l .

One of the most successful application areas of Petri nets
has been modeling and analysis of communication protocols
[14-15], [22], 1381. 1371, [42], 1531, [84]. The work in this
area can be dated back to the early 1970s. In the past few
years, a number of approaches have been proposed which
allow for the construction of Petri net rnodels of protocols

0278-0046/94$04.00 G 1994 IEEE

5hX IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 41, NO. 6, DECEMBER 1994

from specifications written in a relatively skill-free languages
[62], 1991. Methods were also proposed for transforming SDL
1331, Lotos [9], and Estelle [1061 based protocol specifications
into Petri nets for performance and reliability analysis.

Petri nets have been used extensively to model and analyze
manufacturing systems. In this area, Petri nets were used
to represent simple production lines with buffers, machine
shops, automotive production systems, flexible manufacturing
systems, automated assembly lines, resource-sharing systems,
and recently just-in-time and kanban manufacturing systems.
Some of the most recent developments involving modeling and
qualitative analysis were reported in [I] , 151, [IO]. [1101-[113].
The deadlock avoidance was studied in [7], [52], [103].

The application of Petri nets to modeling sequence con-
trollers is another success story. Programmable Logic Con-
trollers are commonly used for the sequence control in auto-
mated systems. They are designed using ladder logic diagrams,
which are known to be very difficult to debug and modify.
Petri net based sequence controllers, on the other hand, are
easy to design, implement, and maintain. In the early So's,
Hitachi Ltd. developed a Petri net based sequence controller
[78] which was successfully used in real applications to control
parts assembly system, and automatic warehouse load/unload
system. The use of Petri nets, as reported, substantially reduced
the development time compared with the traditional approach.
Numerous approaches to the synthesis and implementation of
Petri net based sequence controllers have been reported in the
past few years [35], [41 I , [541, [791, [109]-[111 I.

Petri nets have been extensively used in software devel-
opment. The work in this area focused on modeling and
analysis of software systems using Petri nets 1881. The most
mature developments involve the use of colored Petri nets.
Colored Petri nets have been demonstrated in [57] to be
a useful language for the design, specification, simulation,
validation and implementation of large software systems.
An integrated software development methodology based on
hierarchical colored Petri nets was described in [82]. This
approach allows for automatic translation of SADT diagrams
into colored Petri nets for formal analysis, and for converting
the nets into executable code. The design and analysis of
Ada systems have also attracted a considerable attention
1641, 1771, 1931.

Petri nets, as a mathematical tool, allow for the performance
evaluation of the modeled systems. Both deterministic and
stochastic performance measures can be evaluated by using
a broad class of Petri net models incorporating in their
definitions deterministic and/or probabilistic time functions.
The performance evaluation can be conducted using either
analytical techniques, based on solving the underlying (semi)-
Markov processes, or discrete event simulation. The use of
models which incorporate time functions having probabilis-
tic distributions allows one to obtain production rates for
manufacturing system models, throughput, delays, capacity
for communication and microprocessor system models, as
well as critical resource utilization and reliability measures
for these and other systems. In recent years, this class of
Petri net models has been extensively used to model and
study analytically performance of multiprocessor systems [3 I] ,

[S O] , (681, multiprocessor system buses [46]. [59]-[60], DSP
communication channels [48], parallel computer architectures
1241, [IOS], as well as parallel distributed algorithms 161.

Another area of applications was communication networks.
Work was conducted on Fiber Optics Local Area Networks
such as Expressnet, Fastnet, D-Net, U-Net. Token Ring [67].
Fieldbuses, such as FIP and ISA-SP50, have attracted lots of
attention in the last two years 1131, [26], [SS]. This is not
surprising, since they are very important networks for factory
automation. The interest steadily grows in modeling and
evaluation of High Speed Networks, crucial for the successful
development of Multimedia Systems [23], [25].

The performance of production systems, involving simple
production lines, job shops, robotic assembly cells, flexible
manufacturing systems, etc., was studied in [4], [191, [43],
[49], 1611. 1711, [110]. When a state explosion problem arises,
or the underlying stochastic models are not amenable for
tractable mathematical analysis, simulation may be conducted
for the analysis of both qualitative and quantitative properties
[39], [74], [104]. The discrete-event simulation can be driven
from the model, sometimes using complex algorithmic strate-
gies representing real-time scheduling and control policies of
production systems [701, [891.

Petri nets with time extensions, combined with heuristic
search techniques, were used to model and study scheduling
problems involving manufacturing systems [3], [63], [91], as
well as robotic systems [901, 11081. The robotic assembly and
trajectory planning using Petri nets were presented in [72].

Petri nets with time extensions were also used to model
and analyze dynamics of continuous chemical processes [36].
The continuous time and discrete-event process control was
modeled and analyzed in [17], 1181, [47], [SI], 11071.

This brief overview of applications of Petri nets focused
mainly on selected industrial areas. The references used were
either the most representative in the area, or the most re-
cent ones. The bibliography of Petri nets [83], published in
199 1 , contains 4099 entries dealing with Petri net theory and
applications.

The main objective of this paper is to introduce the fun-
damental concepts of Petri nets to the researchers and prac-
titioners, both from academia and industry, who are actively
involved in the work in the areas of modeling and analysis
of industrial type of systems, as well as those who may
potentially become involved in these areas in the future.
The presentation focuses on the ordinary Petri nets, although
other types of Petri nets are also introduced in the context
of the application driven developments. Additional tutorial
material on Petri nets may be found in [38], [43], [76],
1811, [86]. This paper is organized as follows. The Petri
net description and definitions are presented in Section 2.
This section, also, includes an example illustrating the use of
Petri nets in the modeling of a simple multirobot assembly
system. Some of the most fundamental properties of Petri
nets, such as reachability, boundedness, conservativeness, and
liveness, are discussed in Section 3. The analysis methods
are presented in Section 4. The methods covered in this
section are based on the coverability tree, and the incidence
matrix and state equations. The two methods are, then, used

ZURAWSKI AND ZHOU: PETRI NETS AND INDUSTRIAL APPLICATIONS: A TUTORIAL

f i

569

I

Fig. I . Example of’ graphical representation of a Petri net

to analyze the model of the multirobot assembly system. The
performance analysis of Petri nets is presented in Section 5.
Section 5 introduces the fundamental concepts instrumental
in performance evaluation of timed, and stochastic timed
Petri net models. The application prospects of Petri nets are
discussed in Section 6, including the application driven Petri
nets development.

11. DESCRIPTION OF PETRI NETS

A Petri net may be identified as a particular kind of bipartite
directed graph populated by three types of objects. These
objects are places, transitions, and directed arcs connecting
places to transitions and transitions to places. Pictorially,
places are depicted by circles and transitions as bars or boxes.
A place is an input place to a transition if there exists a
directed arc connecting this place to the transition. A place
is an output place of a transition if there exists a directed
arc connecting the transition to the place. In its simplest
form, a Petri net may be represented by a transition together
with its input and output places. This elementary net may be
used to represent various aspects of the modeled systems. For
instance, input (output) places may represent preconditions
(postconditions), the transition an event. Input places may
represent the availability of resources, the transition their
utilization, output places the release of the resources. An
example of a Petri net is shown in Fig. 1 . This net consists of
five places, represented by circles, four transitions, depicted
by bars, and directed arcs connecting places to transitions
and transitions to places. In this net, place p1 is an input
place of transition t l . Places p2, and 113 are output places of
transition t l .

Fig. 2 . (a) Multiple cuc5. (b) Compact representation of multiple arcs

In order to study dynamic behavior of the modeled sys-
tem, in terms ot‘ its states and their changes, each place
may potentially hold either none or a positive number of
tokens, pictured by small solid dots, a:i shown in Fig. 1.
The presence or absence of a token in a. place can indicate
whether a condition associated with th-is place is true or
false, for instance. For a place representing the availability
of resources, the number of tokens in this place indicates the
number of available resources. At any given time instance,
the distribution of. tokens on places, called Petri net marking,
defines the current state of the modeled system. A marking of a
Petri net with VL places is represented by an (r n x 1) vector hl,
elements of which, denoted as M (p) , are nonnegative integers
representing the number of tokens in the corresponding places.
A Petri net containing tokens is called a marked Petri net.
For example, in the Petri net model shown in Fig. 1, M =
(1,O3U,U,O)?

Formally, a Petri net can be defined as follows:

PN = (P? 2’. I . 0: AdO); where

1 . P = (p 1 p 2 , pn t } is a finite set of places,
2. 7’ = { t l , /,2. ~ tTL} is a finite set of transitions, PUT’ #

8, and P n T = 8,
3. I : (P x T) H N is an input function that defines

directed arcs from places to transitions, where N is a set
of nonnegative integers,

4. 0 : (P x ’f’) H N is an output function which defines
directed arcs from transitions to places, and

5. MO : P +- :V is the initial marking.

If I (p , t) = k (O (p , t) = k) . then there exist k directed
(parallel) arcs connecting place p to transition f. (transition
t to place p) . If I (p . t) = 0 (O (p : / ,) = U), then there
exist no directed arcs connecting p to t (b to p) . Frequently,
in the graphical representation, parallel arcs connecting a
place (transition) to a transition (place) are represented by
a single directed arc labeled with its multiplicity, or weight
k . This compact representation of multiple arcs is shown in
Fig. 2.

By changing distribution of tokens on places. which may
reflect the occurrence of events or execution of operations,
for instance, one can study dynamic behavior of the modeled
system. The following rules are used to govern the flow
of tokens.

Enabling Rule. A transition t is said to be enabled if each
input place p of 1 contains at least the number of tokens equal
to the weight of the directed arc connecting p to t .

570 IEEE TKANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 41. NO. 6, DECEMBER 1994

n A

(a) (b)

(a) Transition f I enabled. (b) Enabled transition tl fires. Fig. 3.

p2 1 0
Fig. 4. Petri net with an inhibitor arc

P3

P2

Fig. 5 . Self-loop removal

Firing Rule:

(a) An enabled transition f may or may not fire depending
on the additional interpretation, and

(b) A firing of an enabled transition t removes from each
input place 1' the number of tokens equal to the weight
of the directed arc connecting p to t . It also deposits in
each output place p the number of tokens equal to the
weight of the directed arc connecting t to p .

The enabling and firing rules are illustrated in Fig. 3. In
Fig. 3(a), transition t l is enabled as the input place p1 of
transition t l contains two tokens, and I (p l ! t l) = 2. The firing
of the enabled tran5ition t l removes from the input place p l
two tokens as I (p 1 . t l) = 2, and deposits one token in the
output place p 3 , O (p 3 . f . 1) = 1, and two tokens in the output
place p2, O (p 2 . f l) = 2. This is shown in Fig. 3(b).

The modeling power of Petri nets can be increased by
adding the zero testing ability, i.e., the ability to test whether a
place has no token. This is achieved by introducing an inhibitor
arc. The inhibitor arc connects an input place to a transition,
and is pictorially represented by an arc terminated with a small
circle. A Petri net with an inhibitor arc is shown in Fig. 4.
The presence of an inhibitor arc connecting an input place
to a transition changes the transition enabling conditions. In
the presence of the inhibitor arc, a transition is regarded as
enabled if each input place, connected to the transition by
a normal arc (an arc terminated with an arrow), contains at

Fig. 6. Petri net inodel of a multirobot system.

TABLE I
1NTERPRI:TATION OF PI.ACI:S A N D TRANSITIONS OF THE PETRI

NET hfODtL OF THE MULIIROBOT ASSEMBLY SYSTEM

[%&e (with t o k e n L l r - Interoretatioo I

least the number of tokens equal to the weight of the arc,
and no tokens are present on each input place connected to
the transition by the inhibitor arc. The transition firing rules
are the same as for normally connected places. The firing,
however, does not change the marking in the inhibitor arc
connected places.

A Petri net is said to be pure or self-loop free if no place
is an input place to and output place of the same transition. A
Petri net that contains self-loops can always be converted to
a pure Petri net as shown in Fig. 5.

In order to illustrate how Petri nets can be used to model
properties such as concurrent activities, synchronization, mu-
tual exclusion etc., we consider a simple example of a mul-
tirobot system. This system is represented by a Petri net
model shown in Fig. 6, and Table I. In this model, two robot
arms perform pick-and-place operations accessing a common
workspace at times to obtain or transfer parts. In order to
avoid collision. it is assumed that only one robot can access
the workspace at a time. In addition, it is assumed that the
common workspace contains a buffer with a limited space
for products. This could represent an operation of two robot
arms servicing two different machining tools, with one robot
arm transferring semiproducts from one machining tool to the
buffer, and the other robot atm transferring semiproducts from
the buffer to the other machining tool.

In this model, places p 1 , p 2 : p s and transitions l l , t 2 , t 3
model activities of robot arm E l l . Places p4, p ; . p~ and transi-
tions t ~ , t s ! ts model activities of robot arm 11'2. Transitions t l
and 14 represent concurrent activities of X1 and R2. Either

ZURAWSKI AND ZHOU: PETRI NETS AND INDUSTRIAL APPLICATIONS: A TUTORIAL 57 I

of these transitions can fire before or after, or in parallel
with the other one. The access to the common workspace
requires synchronization of the activities of the arms in order to
avoid collision. Only one robot arm can access the common
workspace at a time. This synchronization is accomplished
by the mutual exclusion mechanism implemented by a subnet
involving places p7. p 3 , p 6 and transitions 1 2 , t 3 , t 5 . t 6 . Firing
transition f 2 disables t5 , assuming t:, is enabled, and vice versa.
Thus only one robot arm can access the common workspace at
a time. In addition, i t is assumed that the buffer space is “b.”
Thus, for instance, if pH is empty, then t2 cannot be enabled.
This prevents R l from attempting to transfer to the buffer a
part when there is 110 space in the buffer. Also, 1?2 cannot
access the buffer if there is no part in the buffer, or place p g
is empty.

111. PROPERTIES OF PETRI NETS

Petri nets as mathematical tools possess a number of prop-
erties. These properties, when interpreted in the context of
the modeled system, allow the system designer to identify
the presence or absence of the application domain specific
functional properties of the system under design. Two types
of properties can be distinguished: behavioral and structural
properties. The behavioral properties are these which depend
on the initial state, or marking, of a Petri net. The struc-
tural properties, on the other hand, do not depend on the
initial marking of a Petri net. These properties depend on the
topology, or net structure, of a Petri net. In this section, we
provide an overview of some of the most important, from
practical point of view, behavioral properties. The focus on
the behavioral properties is dictated by the space limitations
of this tutorial. An extensive description of the structural
properties, and the analysis methods can be found in [76].
The behavioral properties discussed in this section are reach-
ability, boundedness, conservativeness, liveness, reversibility
and home state. Descriptions of other properties such as
coverability, persistence, synchronic distance, and faimess can
also be found in [76]. 1861.

A. Reachability

An important issue in designing distributed systems is
whether a system can reach a specific state, or exhibit a par-
ticular functional behavior. In general, the question is whether
the system modeled with Petri nets exhibits all desirable
properties, as specified in the requirements specification, and
no undesirable ones.

In order to find out whether the modeled system can
reach a specific state as a result of a required functional
behavior, it is necessary to find such a sequence of firings
of transitions which would result in transforming a marking
Ai,, to M z , where .W(represents the specific state, and the
sequence of firings represents the required functional behavior.
It should be noted that real systems may reach a given
state as a result of exhibiting different permissible patterns
of functional behavior. In a Petri net model, this should be
reflected in the existence of specific sequences of transitions

firings, representing the required functional behavior, which
would transform a marking MO to the required marking M;.
The existence in the Petri net model of additional sequences
of transitions firings which transform A40 to hf; indicates
that the Petri net model may not be reflecting exactly the
structure and dynamics of the underlying system. This may
also indicate the presence of unanticipated facets of the func-
tional behavior of the real system, provided that the Petri net
model accurately reflects the underlying system requirements
specification. A marking M , is said to be reachable from a
marking MO if there exists a sequence of transitions firings
which transforms a marking MO to Mi. .4 marking M1 is said
to be immediately reachable from a marking Af~~ if a firing
of an enabled transition in h f ~ ~ results in marking MI. For
instance, in the Petri net model of the multirobot assembly
system shown in Fig. 6, the state in which robot arm R1
performs tasks in the common workspace, with robot arm
R2 waiting outside, is represented by the marking vector
M i = (O , O , l . O . l ,O:O,2. l)T. Mi can be reached from the
initial marking M(,, where 1140 = (1,O. 0 . 1. 0, 0 . 1. 3.
by the following sequence of transitions firings--t 1 t 2 f ~ . The
marking M 1 = (0. I , 0) 1 .0 .0 . 1,3, O) T , which represents the
state of the system in which robot arm h’l waits for the access
to the common workspace and robot arm R2 performs tasks
outside the commom workspace, is immediately reachable
from the initial marking when transition tl fires. It should
be noted that in transitions t.1, and L 4 are both enabled. The
set of all possible markings reachable from AZ,, is called the
reachability set. and denoted by R(M0). This will be discussed
in more detail in Section 4.1. The set of all possible firing
sequences from M,, is denoted by L(hf (,) . Thus the problem
of identifying the existence of a specific state Mi, the system
can take on, can be redefined as the problem of finding if ’

M ; E R(1Lf”).

B. Boundedness and Safeness

Places are frequently used to represent information stor-
age areas in communication and computer systems, product
and tool storage areas in manufacturing systems, etc. It is
important to be able to determine whether proposed control
strategies prevent from the overflows of these storage areas.
The information storage areas can hold, without corruption,
only a restricted number of pieces of data. In manufacturing
systems, attempts to store more tools? for instance, in the
tool storage area may result in the equipment damage. The
Petri net property which helps to identify in the modeled
system the existence of overflows is the concept of bound-
edness. A Petri net is said to be I;-bounded if the number
of tokens in any place p , where p E P, is always less or
equal to I; (k is a nonnegative integer number) for every
marking M reachable from the initial marking M(,. M E
R(M0). A Petri net is safe if it is I-bounded. A Petri net
shown in Fig. 7 is safe. In this net 110 place can contain
more then one token. An example of a Petri net which
is unbounded IS shown in Fig. 8. This net is unbounded
because place p 4 can hold an arbitrarily large number of
tokens.

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 41, NO. 6, DECEMBER 1994

Fig. 7. Petri net that I \ safe.

i^ p3

L

P4

Fig. 8. Petri net that i \ unbounded

C. Conservativeness

In real systems, the number of resources in use is typically
restricted by the financial as well as other constraints. If tokens
are used to represent resources, the number of which in a
system is typically tixed, then the number of tokens in a Petri
net model of this system should remain unchanged irrespective
of the marking the net takes on. This follows from the fact that
resources are neither created nor destroyed, unless there is a
provision for this to happen. For instance, a broken tool may
be removed from the manufacturing cell, thus reducing the
number of tools available by one.

A Petri net is conservative if the number of tokens is
conserved. From the net structural point of view, this can
only happen if the number of input arcs to each transition
is equal to the number of output arcs. However, in real
systems resources are frequently combined together so that
certain tasks can be executed, then separated after the task is
completed. For instance, in a flexible manufacturing system an
automatic guided vehicle collects a pallet carrying products
from a machining cell, and subsequently delivers it to the
unload station where the vehicle and pallet are separated. This
scenario is illustrated in Fig. 9. Transition tl models loading
a pallet onto a vehicle; transition t 2 represents the pallet being
delivered to the unload station and subsequently removed from
the vehicle. Although the number of tokens in the net changes
from two to one when ti fires, and then back to two tokens
when f.2 fires, the number of resources in the system does not
change. In order to overcome this problem, weights may be

Pallet

p3 , 3 P4
"', ~ A G V + P a i l e t I \

-
AGV

P -? P5
Fig. 9. Petri net conservative wi th rcspect to c c = [l. 1 , 2 . 1. 11.

P3

t2

tl

t3

Fig. 10. Petri net that is s t r idy conservative.

associated with places allowing for the weighted sum of tokens
in a net to be constant. A Petri net is said to be conservative
if there exists a vector W. 111 = [7u1~ 1112,i wrrL], where nr. is
the number of places, and ~ (p) > 0 for each p E P, such
that the weighted sum of tokens remains the same for each
marking A4 reachable from the initial marking M,,. A Petri
net is said to be strictly conservative if all entries of vector UJ

are unity. The Petri net shown in Fig. 9 is conservative with
respect to vector 71' = [l, 1 .2 . 1. 11 as the weighted sum of
tokens in each marking is two. An example of a Petri net which
is not conservative is shown in Fig. 8; place p~ can hold an
arbitrarily large number of tokens. If a Petri net is conservative
with respect to a vector with all elements equal to one. then
the net is said to be strictly conservative. An example of a
Petri net which is strictly conservative is shown in Fig. 10.

D. Liveness

The concept of liveness is closely related to the deadlock
situation, which has been studied extensively in the context
of operating systems. Coffman et al. [34] showed that four
conditions must hold for a deadlock to occur. These four
conditions are:

1. Mutual exclusion: a resource is either available or allo-
cated to a process which has an exclusive access to this
resource.

2. Hold and wait: a process is allowed to hold a resource(s)
while requesting more resources.

3 . No preemption: a resource(s) allocated to a process
cannot be removed from the process, until it is released
by the process itself.

4. Circular wait: two or more processes are arranged in a
chain in which each process waits for resources held by
the proce\s next in the chain.

For instance, in a flexible manufacturing system, a deadlock
occurs when the inputhutput buffer of a machining tool holds

ZURAWSKI AND ZHOC- PETRI NETS AND INIXSTRIAL. APPLICATIONS: A TUTORIAL 513

Fig. 1 I .

tl tt3 W w PI
Petri net with different levels of liveness of transitions

E. Reversibiliiy and Home Stute

An important issue in the operation of real systems, such
as manufacturing systems, process control systems, etc., is
the ability of these systems for an error recovery. These
systems are required to return from the failure states to the
preceding correct states. This requirement is closely related to
the reversibility and home state properties of a Petri net. A
Petri net, for the initial marking MO, is said to be reversible if
for each marking M in f?(i\4(l), MO is reachable from M. The
home state property is less restrictive, and more practical, then
the reversibility property of ;I Petri net. A Petri net state M; is
said to be a home state if for each marking k.1 in R(M0) , Mi is
reachable from M. The Petri net shown in Fig. 7 is reversible.
The Petri net shown in Fig. 8 is nonreversible.

a pallet with already machined products, and another pallet
with products to be machined has been delivered to the buffer.
Assuming that the buffer can hold one pallet only at a time, and
an automated guided vehicle (AGV), for instance. has a space
for one pallet, a deadlock occurs. The pallet with machined
parts cannot be moved from the buffer to the AGV. The pallet
with parts to be machined cannot be moved from the AGV
to the buffer. In this example, all four conditions hold, with
the buffer and AGV space for pallets regarded as resources.
Unless there is a provision in the control software for deadlock
detection and recovery, a deadlock situation. initially confined
to a small subsystem. may propagate to affect a large portion
of a system. This frequently results in a complete standstill
of a system. A Petri net modeling a deadlock free system
must be live. This implies that for all markings iVf, which
are reachable from the initial marking MO, it is ultimately
possible to fire any transition in the net by progressing through
some firing sequence. The Petri net shown in Fig. 10 is live.
This requirement, however, might be too strict to represent
some real system5 or scenarios which exhibit deadlock-free
behavior. For instance, the initialization of a system can be
modeled by a transition (or transitions) which fires a finite
number of times. After initialization, the system may exhibit a
deadlock free behavior. although the Petri net representing this
system is no longer live as specified above. For this reason,
different levels of liveness for transition 1, and marking M u ,
were introduced. A transition t in a Petri net is said to be:

LO-live (or dead) i f there is no firing sequence in L(M0)
in which f can fire,
Ll-live (potentially firable) if f can be fired at least once
in some tiring sequence in L (M o) ,
L2-live if t can be fired at least X: times in some firing
sequence in f , (A f ()) given any positive integer k ,
L3-live if f can be tired infinitely often in some tiring
sequence in L(M(1). and
L4-live (or live) if / is Ll-live (potentially firable) in
every marking in X(A.;k,).

Following this classification, a Petri net is said to be L%-
live, for marking M(1, if every transition in the net is L,i-live.
Different levels of liveness of transitions are shown in Fig. 1 1.

In this example. transitions t u . I1 ~ 1 2 , and /,:I are LO, L1. L2,
and LS-live, respectively, and strictly.

IV. ANALYSIS METHODS
In the prelious section. we defined a number of proper-

ties of Petri nets which are useful for analyzing modeled
systems. An important issue to be considered during analysis
is whether there exists one-to-one functional correspondence
between the Petri net model and the original requirements
specification; typically expressed in an informal way. The
construction of Petri net models from informal requirements
specifications is not a trivial task, which requires a great deal
of modeling experience, as well as the knowledge of the
techniques assisting in the model construction. As a result,
a Petri net model may differ considerably from its original
specification. This is especially true when large Petri net
models of complex systems are involved. The existence of
the one-to-one functional correspondence between an original
requirements specification and its Petri net representation
allows projection of the analysis results, obtained for the
Petri net model. onto the original description. This provides
feedback to the customers which can, in many instances,
help the customers clarify their perception of the system.
Another important issue to be addressed during the analysis
stage is the completeness of the requirements specitication. In
most cases, the requirements specification defines the external
functional behavior of a system. This is typically expressed
in terms of the system input output relationships. Inputs
are generated by the environment of the system. Outputs
are responses of the system to these inputs. If some inputs,
generated by the environment of the system, are not included
in the requirements specification, then the system will be
unable to respond to these inputs properly when they occur
during the system normal operation. The completeness of the
requirements is especially important in the case of safety-
critical systems. In these systems, the incompleteness of the
requirements specification may lead to catastrophic events
to occur in the environment of the system. For instance,
the occurrence of unanticipated states in the operation of
a nuclear reactor may result in the failure of the control
system to respond to them properly, or at all, thus potentially
leading to the reactor system failure. The consistency of the
requirement specification is another issue to be considered
during analysis. The inconsistency occurs when for a given
uermissible. temDoral combination of inputs. a requirements

514 1Eb.E TKAI \ISACTIONS ON INDUSrRlAL ELECTRONICS, VOL. 41, NO. 6. DECEMBER 1994

Fig. 12. A Petri net model.

specification allows for two or more different permissible
temporal combinations of outputs. It is mainly due to a
vague, incomplete, and frequently incorrect perception of
the system functionality. In this paper, we are going to
present an overview of two fundamental methods of analysis.
One is based on the reachability tree, and the other on
the matrix equation representation of a net. In addition to
the two methods, a number of techniques were proposed
to assist in the analysis of Petri net models. These ap-
proaches allow for a systematic transformation of a Petri
net, by reducing the number of places and transitions in a
net, and at the same time preserving the properties such as
boundedness, conservativeness, liveness, etc. Smaller nets are
easier to analyze. Some of these techniques were discussed
in 1761.

A. The Covernhilir[v Tree

This approach is based on the enumeration of all possible
markings reachable from the initial marking MO. Starting with
an initial marking Mu. one can construct the reachability set by
tiring all possible transitions enabled in all possible markings
reachable from the initial marking MO. In the reachability
tree, each node is labeled with a marking; arcs are labeled
with transitions. The root node of the tree is labeled with an
initial marking MO. The reachability set becomes unbounded
for either of two reasons: The existence of duplicate markings,
and a net is unbounded. In order to prevent the reachability
tree from growing indefinitely large, two steps need to be
taken when a tree is constructed. The tirst step involves
eliminating duplicate markings. If on the path from the initial
marking Mc, to a current marking M there is a marking
M’, which is identical to the marking M , then the marking
M , as a duplicate marking, becomes a terminal node. The
occurrence of a duplicate marking implies that all possible
markings reachable from M have been already added to the
tree. For unbounded nets, in order to keep the tree finite,
the symbol w is introduced. The symbol UI can be thought

I t3

(1, U, 1, 0IT
Fig. 13. The coverability tree of the Petri net model shown in Fig. 9.

of as the infinity. Thus, for any integer ‘TI,, w + 71 = w,
w - n = w , < w. In this case, if on the path from
the initial marking MO to a current marking M there is a
marking M’, with its entries less or equal to the corresponding
entries in the marking M , then the entries of hl, which are
strictly greater than the corresponding entries of M’, should
be replaced by the symbol w. In some paths the existence of
markings with the corresponding entries equal or increasing
(as we move away from the root node) indicates that the
firing sequence which transforms M’ to M can be repeated
indefinitely. Each time this sequence is repeated, the number
of tokens on places labeled by the symbol w increases. The
coverability tree is constructed according to the following
algorithm:

1.0) Let the initial marking MO be the root of the tree

2.0) While “new” markings exist do the following:
3.0) Select a “new” marking M.
3.1) If M is identical to another marking in the tree,

then tag A 4 “old,” and go to another “new” marking.
3.2) If no transitions are enabled in M , tag M “terminal.”
4.0) For every transition t enabled in marking M do

the following:
4.1) Obtain the marking M‘ which results from firing

1. in M .
4.2) If on the path from the root to M . there exists a

marking M” such that M’(p) 2 M”(p) for each
place p , and M’ # A!”, then replace M’(p) by w
for each p . wherever M ’ (p) > M”(p).

labeled t , and tag M‘ “new.”

and tag it “new.”

4.3) Introduce as a node, draw an arc from M to M’

The following exainple will illustrate the approach. Con-
sider the net shown in Fig. 12, and its coverability tree
in Fig. 13. For the given initial marking, the root node is
MO = (l , O , L , O) ’ . In this marking, transition I - 3 is enabled.

ZURAWSKI AND ZHOU: PETRI NETS AND INDUSTRIAL APPLICATIONS: A TUTORIAL 575

When t 3 fires a new marking is obtained: MI = (1,O. 0, l)T.
This is a “new” marking in which transition t 2 is enabled.
Firing 12 in M I results in M 2 = (1.1. l , O) T . Since h f 2 =
(1.1, l , O) T 2 Ad,, = (l , O , l,O)T, the second component
should be replaced by the symbol w . This reflects the fact
that the firing sequence t 3 t 2 may be repeated arbitrarily
large number of times. In marking M 2 = (l , ~ , l , O) ~ two
transitions are enabled: transition 1 1 and transition t 3 . Firing
b , results in marking AT3 = (1 , ~ . 0 , 0) ~ , which is a “ter-
minal” node. Firing t 3 results in a “new” marking MA =
(L,3,0: l) T , which enables transition f ~ . Firing / 2 in A44
results in an “old” node: , I f5 = (1: w. 1, O) T which is identical
to M 2 .

A number of properties can be studied by using the cov-
erability tree. For instance, if any node in the tree contains
the symbol U , then the net is unbounded since the symbol w
can become arbitrarily large. Otherwise, the net is bounded.
If each node of the tree contains only zeros and ones, then
the net is safe. A transition is dead if it does not appear
as an arc label in the tree. If a marking M is reachable
from a marking Ala, then there exists a node Ad’, such that
A4 5 M’. However, since the symbol w can become arbitrdrily
large, certain problems, such as coverability and liveness,
cannot be solved by studying the coverability tree only. For a
bounded Petri net, the coverability tree contains, as nodes, all
possible markings reachable from the initial marking MO. In
this case, the coverability tree is called the reachability tree.
For a reachability tree any analysis question can be solved by
inspection.

B. The Incidence Matrix and Stute Equation

An alternative approach to the representation and analysis of
Petri nets is based on matrix equations. In this approach matrix
equations are used to represent dynamic behavior of Petri
nets. The fundamental to this approach is the incidence matrix
which defines all possible interconnections between places and
transitions in a Petri net. The incidence matrix of a pure Petri
net is an integer r!, x 7 n matrix A, where 71 is the number
of transitions. and 7ri. is the number of places. The entries of
the incidence matrix are defined as follows: U;,, I= (I,; - a;,
where (I,: is equal to the number of arcs connecting transition
I , to its output place p , ((1,; = O(p, . t L)) , and (1;; is equal to
the number of arcs connecting transition t i to its input place
pJ (a , = l (p , . t ,)) . When transition t ; fires, U,:. represents
the number of tokens deposited on its output place; p) ,
represents the number of tokens removed from its input place;
p j . a i j represents the change in the number of tokens in place
p,. Therefore, transition I , is said to be enabled in marking
121 if

For Petri nets with self-loop?, aLJ = 0 for a place p , and
transition t , which belong to a self-loop. For this reason, in
order to make sure that the incidence matrix properly reflects
the structure of a Petri net, the net is assumed to be pure, or

made pure by introducing two additional places (see Fig. 5) .
The state equation for a Petri net represents a change in the
distribution of tokens on places (marking) as a result of a
transition firing. This equation is defined as follows:

:Lfk is an rri x 1 column vector representing a marking n / ! k

immediately reachable from a marking M - 1 after firing
transition t i . The k-th firing vector u k , an ‘rt. x 1 column
vector, has only one nonzero entry. This entry. a 1 in the
i-th position, represents a transition t ; firing in the k-th firing
of the net firing sequence starting with an initial marking M”.
This entry corresponds to the i-th row of the incidence matrix
A which represents a change of a marking as a result of a
firing transition t,. The matrix equation is useful in studying
the reachability problem. However, this issue is outside the
scope of this tutorial. For details see [76], 181 1, 1861.

Two concepts related to the incidence matrix are especially
useful in studing properties of Petri net models. They are
T-invariant. and P-invariant.

An integer solution :I‘ of A T . r : = 0 is called a 7’-invariant.
The nonzero entries in a ?’-invariant represent the firing
counts of the corresponding transitions which belong to a
firing sequence transforming a marking Ad,] back to MO.
Although a ’I -invariant states the transitions comprising the
firing sequence transforming a marking M[, into AT[,, and the
number of times these transitions appear in this sequence, it
does not specify the order of transitions firings.

An integer solution ;i/ of l l y = 0 i s called a P-invariant.
The P-invariants can be explained intuitively in the following
way. The nonzero entries in a P-invariant represent weights
associated with the corresponding places so that the weighted
sum of tokens on these places is constant for all markings
reachable from an initial marking.

The subset of places (transitions) corresponding to the
nonzero entries of a ?’-invariant (P-invariant) is called the
support of an invariant, and denoted by I [:/;I 1 (1 I;yl I) . A support
is said to be minimal if no proper nonempty subset of the
support is also a support.

C. An Example

In this section, we demonstrate how the coverability tree
and invariant based techniques can be used to analyze the
Petri net model of the multirobot system which is shown in
Fig. 6. Without losing the discussion generality, we assume
b = 1. The coverability tree, in this case a reachability tree, is
shown in Fig. 14. The incidence matrix of this net is shown
in Fig. 15.

The P-invariants obtained for this net are as follows:

y 1 = (1 1 1 0 0 0 0 0 0)T

, t / 2 = (0 0 0 1 1 1 0 0 o) =
y j = (O 0 1 0 0 1 1 0 O)T

. l / 4 = (0 0 0 0 0 0 0 1 l) ?

576 IEEE TRANSACTIONS ON lNDUYTKlAL LLECTKONICS, VOL 41, NO. 6, DECEMBER 1994

M o = (1 0 0 1 0 0 1 10)

M 4 = (O 0 1 1 0 0 0 o i) ~ M 3 = (0 1 0 0 1 0 1

M g = (0 1 0 0 1 0 1 0 I)T M ~ o = (l O O O O 1 O 1 O) T

k y \
MO Mi1 = (0 1 0 0 0 1 0 1 O)T

M I

Fig. 14. Coverability tree of the Petri nrl model shown in Fig. 3.

PI P2 P3 P4 PS P6 ?‘7 P8 P9

- 1 1 0 0 0 0 0 0 0
0 - 1 1 0 0 0 - 1 - 1 1
1 0 - 1 0 0 0 1 0 0
0 0 0 - 1 1 0 0 0 0
0 0 0 0 - 1 1 - 1 1 - 1
0 0 0 1 0 - 1 1 0 0

Fig. 15.
cell.

Incidence matrix of the Petri net model of (he multirobot assembly

The following are the corresponding invariant supports:

l l ? / l l = {P1~1)2?1):3)

l lvnll = {p4 .P; .PC;)

I I : Y ~ {;us.Ps,P~}
/ / : ? / - 1 l / = (P 8 ; P Y) .

Boundedness and Sajeness: The Petri net shown in Fig. 6
is bounded. This is evident from the reachability tree: no
marking reachable from the initial marking MO contains the
w symbol. In addition, since for each marking, no entry is
greater than one, the net is safe. These properties can be also
easily established using P-invariants. Since each place in the
net belongs to some invariant support, and the net starts from
a bounded initial marking, the net i s bounded. In addition,
since the token count in each invariant support in the initial
marking is one, the net is also safe. Two propcrtics related
to the operation of thc actual system can be deduced from
the boundedness propel-ty of the Petri net model. There is no
bufl‘er overflow, no provision for R1 to access the buffer area
when it is full. Also, there is no buffer underflow, no provision
for IC2 to access thc buffer area when it is empty. When
using the reachability tree, these properties follow from thc

Fig. 16.

net safeness. The entries i n each marking, which represent the
number of tokens in places p8 and p y , are either zero or one.
Using invariants: The invariant support))y/-1 1) covers places pa,
and p9. Since the token content in lIy/-11/ in the initial marking
is one, there is only one token either on p x , or p y at a time.
Therefore there IS neither buffer overflow nor underflow.

ConservativenP.F.v.ie.~.~: The Petri net shown in Fig. 6 is conser-
vative. From the reachability tree, the net is conservative with
respect to vector ‘tu = [l, 1 .2 .1 ,1 ,2 , 1: 1: 11. The weighted
sum of tokens remains the same for each marking reachable
from the initial marking, and equals four. Using invariants: The
token content in each invariant support in the initial marking is
one. The invariant supports 11y1II, Il;ylll, and Ily411 are mutually
exclusive. The invariant supports II:qI 1 1 and 11;y:J contain place
p:$ as acommon element. The invariant supports l l ~ y ~ l l and /l;y311
contain place as a common element. Thus the weight of
places p s and p1; should be two for the net to be conservative.
The implication of this property is that the number of robot
arms operating in the assembly system is two and does not
change. Also, the number of the space resources in the buffer
area is one and does not change.

Liveness: The Petri net shown in Fig. 6 is live; all transi-
tions are live.

Fig. 16 shows a reachability graph of the Petri net of Fig. 6.
The reachability graph shown in Fig. 16 is a directed graph
consisting of a set of nodes, and a set of directed arcs. The set
of nodes represents all distinct labeled nodcs in the reachability
trec. The set of directed arcs, where each arc is labeled with
a transition, represents all possible transitions between all
distinct labeled nodes in the reachability tree.

By inspection. the net is U-live, since for any marking
reachable from making M,,, it is possible to ultimately tire any
transition by executing some firing sequence. The invariants
could be used to demonstrate “manually” that the net is live.

7URAWSKI AND ZHOCI: PETRI NETS AND INDUSTRIAL APPLJCATIONS: A TUTORIAL SI7

However, for the net of this size, this would be a tedious
procedure. As the net is live, the system cannot come to a
standstill where no operation is possible.

Reversibility: The Petri net shown in Fig. 6 is reversible.
Also by inspection, using the reachability graph, IW" is reach-
able from any marking AT E R(M0).

V. PERFORMANCE ANALYSIS

The development of man-made systems requires that both
functional and performance requirements are met. Depending
on the development stage of a system, the knowledge of
either an approximate or exact (or both) performance may be
required. For example, at the design stage, the approximate
performance of the alternative design models is required in
order to eliminate these proposals which are highly unlikely
to meet the performance requirements when fully developed
and implemented. Analytical techniques play an important role
at this stage. They allow the designer to obtain the required
performance measures, involving a relatively small time in-
vestment needed for the model construction and its solution.
The selected design altematives are then refined by increasing
the level of details in order to include in the model the actual
operational policies and time characteristics. As a result, the
model complexity or the presence of heuristic algorithms may
prohibit the use of the analytical techniques. The discrete-
event simulation is, then. the only viable alternative for the
performance evaluation. Although, it is an expensive and time
consuming technique.

The ordinary Petri nets do not include any concept of time.
With this class of nets, i t is possible only to describe the logical
structure of the modeled system, but not its time evolution.
Responding to the need for the temporal performance analysis
of discrete-event systems, time has been introduced into Petri
nets in a variety of ways. In this section two fundamental
types of timed Petri nets are discussed in the context of the
performance evaluation. These are deterministic timed Petri
nets, and stochastic ones. An example of a simple production
systems is used to illustrate the basic solution techniques for
these classes of nets. The focus of the discussion in this section
is on the analytical performance evaluation of Petri net models.
This choice was motivated mainly by the recognition of the
importance of using the analytical techniques for performance
evaluation.

A. Deterministic Timed Petri Nets

Time may be associated with transitions (timed transition
Petri net-TTPN). TTPN's can be classified into three-phase
tiring TTPN's, and atomic firing TTPN's. In the former class,
tokens are removed from the input places when a transition
becomes enabled. The transition fires after a certain period of
time (time delay), depositing tokens on the output places. In
the latter class, tokens remain on the input places of a transition
which is enabled. After a certain period of time (time delay),
the transition fires removing tokens from the input places, and
deposits tokens on the output places.

The presence of the conflict structures (a structure involving
a place having two, or more output transitions) in a Petri net,
execution of which leads to conflicts (in the conflict structure
only one transition can fire, others become disabled), requires
a conflict resolution mechanism to be introduced. Since this
mechanism is, typically, based on a probabilistic function, the
net becomes stochastic. For this very reason, the use of the
deterministic timed Petri nets for the performance evaluation,
as reported to date, has been restricted to the choice-free or
conflict-free nets, which can be further modeled as marked
graphs, or event-graphs.

A marked graph is a PN (P , T , I , 0, M O) such that 'dp E
P,t E T , I (p , t) 5 1. O (p , t) 5 1, and given any p E P,
I{t E T : O (p , t) = 1}1 = 1, and I{t C: T : I (p , t) = 1}1 = 1.

In a marked graph, each place has exactly one input tran-
sition and exactly one output transition. Thus no conflict is
possible. The marked graph models are suitable to represent
and study performance of the asynchronous concurrent sys-
tems which do not involve conflicts [U], [95]. This class
of nets has been extensively used to model and analyze
performance of the industrial automated systems such as job-
shop production systems, robotic assembly cells, and flexible
manufacturing cells [43], [49], [l l O J .

A timed marked graph is a marked graph (P , T . I , O ,
Mo,y.r), where y: P h I?+ is the delay function, R+ is
the set of nonnegative real numbers, and 7 : T H R+ is the
firing time function.

In a timed marked graph, deterministic time delays are
associated with places and transitions. A token in a place. with
an associated delay time, can be available or not-available
to enable its output transition. The previous tiring rules for
ordinary PN's are expanded to include the following:

1 . At any time instance, a transition t becomes enabled if
each input place p of t contains at least one available
token,

2 . Once transition t is enabled, it starts tiring by removing
one token from each input place. It completes firing
after the time delay ~ (t) , and deposits one token into
each output place p . These tokens become available after
time ~ (p) .

A marked graph is strongly connected if there is a directed
path from any node to any other node, where a node can be
either a transition or place.

An elementary path is a sequence of nodes: z1x2...zn,
TI, 2 1, such that there is an arc from .ci to .x,+l, where
1 5 ,i < r i . If 71 > 1, :I;; = : K ~ implies that 1: = j . 1 5 , i : ; j 5 71.

An elementary loop, or circuit, is a sequence of nodes:
:c1:c2c,, ri > 1, such that z; = :I; .; , where 1 5 ,I < j 5 7 1 ,

implies that i = 1 and j = TI,.

The fundamental approach to studying timed marked graphs
is based on two concepts: The total time delay in a loop,
and the total number of of tokens in a loop. A strongly-
connected marked graph consists of a number of elementary
loops. The total time delay in a loop is obtained as a sum
of delays introduced by all transition and places comprising
the loop. The total number of tokens in a loop is obtained
as a sum of lokens present in the places which belong to the

578 IEEE TRANSACI IONS ON INDUS ['RIAL kLECTRONICS. VOL 41, N O 6. DhCEMBkR lY94

Robot 1 Machrne 1 Robot 2 Machine2 -

Fig. 17.
convcyers.

A production line consisting of two machines, two robots, and two

Slots in Conveyor
M I dvailable available M2 available

v

K 1 avniiahle RZ available ,'
Fig. 18. Deterministic tirned Petri net model I'or the production line

loop. Then, the minirnum cycle time of the marked graph is
1851. 1951:

K = I l l ~ t X { U , / N , }

where D, is the time delay associated with the i-th loop. l l i i

is the total number of tokens present in the places of the i-th
loop. The ratio D L / N , is called the cycle time of loop %.

The upper and lower cycle times can be derived for the
timed (deterministic or random) marked graphs using the
methods proposed in 1201 and 1431. Linear programming was
demonstrated to be ii computationally efficient method for
computing the cycle times 1201, 1491, 1751.

An example of a siniple production line will be used
to demonstrate the method for obtaining cycle times of a
marked graph.

The production line consists of two machining tools (A41
and M 2) , two robot arms, and two conveyors. Each machining
tool is serviced by a dedicated robot arm which performs
load and unload tasks. One conveyor is used to transport
workpieces, a maximum of two at a time. The other conveyor
is uaed to transport empty pallets. There are three pallets
available in the system. The arrangement is shown in Fig. 17.
Each workpiece is machined on A41 and M 2 , in this order.
The machining on 1\41 takes I O time units. The machining on
M 2 takes 16 time units. The load and unload tasks require 1
time unit. The conveyors transportation times are negligible.

The deterministic timed Petri net model of this system is
shown in Fig. 18. Table 11 provides a description of the places
and transitions involved, as well as the associated time delays.
The initial marking of the net is (3000121 ll)T. The Petri net
model contains four loops. The time delays associated with
these loops, as well as their token contents, are shown in
Table 111. Then, the minimum cycle time is 18 time units, as
determined by the loops 1 ,pA14p;(or p 9) f : 3 . This means that i t
takes a miiiimum of I8 time units to trdnsform a raw workpiece
into a final product.

TABLE 111
LOOPS AND THEIR I)EI.AYS, TOKEN S[rus. A N D Cuc1.1: T I M ~ S FOR FIG 18

I t should be noted that the increase in the number of
available pallets is not going to make the minimum cycle time
of the system any shorter. This is because of the time involved
in machining at M 2 . Thus, Petri net analysis can also help
decide the appropriate number of pallets and/or fixtures.

B. Stochastic Tirned Petri Nets

When time delays are modeled as random variables, or
probabilistic distributions are added to the deterministic
timed Petri net models for the conflict resolution, stochastic
timed Petri net models are yielded. In such models, it
has become a convention to associate time delays with
the transitions only. When the random variables are of
general distribution or both deterministic and random
variables are involved, the resulting net models cannot be
solved analytically for general cases. Thus simulation or
approximation methods are required. The stochastic timed
Petri nets in which the time delay for each transition is
assumed to be stochastic and exponentially distributed are
called stochastic Petri nets (SPN) 1731. The SPN models
which allow for immediate transitions, i.e., with zero time
delay, are called generalized SPN (GSPN) 1681, 1691. Both
models, including extensions such as priority transitions,
inhibitor arcs, and probabilistic arcs can be converted into
their equivalent Markov process representations, and analyzed
analytically.

To demonstrate the methodology, we consider the example
of the system shown in Fig. 17. Suppose that the machining
tool A41 is faster than M 2 , however subject to failures. A42
and the two robots are failure-free. Given the processing rates
of the machining tools and robots, as well as the failure and
repair rates of M I , we are interested in obtaining the average
utilization of A f t , and the production rate of the system
(throughput), assuming that only one pallet is available.

ZURAWSKI AND ZHOlr: PETRI NETS AND INDUSTRIAL APPLICATIONS: A TUTORIAL 519

M1 idle Slots in Conveyor available

(a)

&=(100012) ' - (O1OOO2)T ~ M 2 = (O 0 1 0 1 1) T
f 4 1 I t 5

M3= (0 0 0 1 0 2)T

(b)

(C)

Fig. 19.
bility graph. (c) Markov chain.

(a) Stochastic Petri net model for the production line. (b) Reacha-

The SPN model of the system is shown in Fig. 19(a). A
number of modeling assumptions were made for the conve-
nience of the presentation:

1. The tasks performed by M 2 and R2 were aggregated
into a single transition representing loading, processing
and unloading at M 2 .

2 . The time associated with the unloading tasks performed
by R1 is incorporated into transition t a .

3. The failure-repair loop is added to MI .
4. The time delays are associated with transitions only.
In the model, A; is used to represent the firing rate of a

transition t , . A firing rate of a transition equals to the reciprocal
of the average firing delay time of the corresponding event or
operation. The description of places and transitions is given in
Table IV, together with the adopted values of the firing rates.

The reachability graph of the model is shown in Fig. 19(b).
The graphical representation of the corresponding embedded
continuous time Markov chain is shown in Fig. 19(c). In this
representation, the links between states are labeled with the
firing rates of the corresponding transitions.

The transition rate matrix (~ . ~ . ,) (i , , j = 0, 1: 2 : 3) for the
embedded continuous time Markov chain, which is shown in
Fig. 19(c), is as follows:

-A1 A1

0 -A2 -X.1 A: ::j c = 1 0 -A3 0 . A 3

0 A;, 0 -A;,

The steady-state probabilities, denoted as 7 r 1 , can be ob-
tained by solving the following equations:

(TO 7r1 7r2 T;3)C = 0

TO + 7r1 + 7r2 + 7r:3 = 1.

TABLE IV
INTERPRETATION . ~ N D FIRING RATES OF PLACES A N D TRANSITIONS I N FIG. 19(a).

Place Interpretation
pl Workpieces and pallets avadable
pz M I processing a workpiece
p3 Workpiece ready for processing at M2

M I in repair

~ ~ ~ ! ~ ! k t s available
Firing Rate

Processing and unloading involving M1, and RI

M1 breaks down AI = 0.5
A 5 = 4

~-
M I is repaired

This yields

7 i , = X 2 X 3 X j / X .

TL' = X1X2X5/X.

7r1 == X1X3X5/X.

7r3 == X1X3X.1/X

where X = X z X 3 X j + X l X 3 X j + X1X:!X5 + XlX: jX4.
When using the firing rates from Table IV, and the derived

formulas for the steady-state probabilities, the following values
are obtained 70 = 0.05, 7r1 = 0.40, 7r;: = 0.50, and 7r3 = 0.05.

I . The M 1 executing a task is modeled by the presence of
a token on place p'. This corresponds to the marking
M1, and state 7 r l , The expected utilization of M1 is
then 40%.

2. The completion of a product is modeled by firing tran-
sition / 3 . This transition is enabled in marking h f 2 .

Thus, the system production average rate is given by
the product of the probability that t3 is enabled and the
firing rate of tJ, i.e., ~ 2 X : j = 2.0 workpieces/time unit.

The analysis of a Markov model may involve the steady-
state (as shown in the example) or transient analysis (the
study of the system evolution from its initial state to the
steady state), or both depending on the requirements and
the Markov process itself. For example, if the net is not
deadlock-free, i.e., the underlying Markov process has an
absorbing state(s), then the steady-state analysis makes no
sense. General-purpose software packages are available for
solving the above stochastic net models, including GreatSPN
[30] and SPNP 1321.

VI. PETRI NETS: APPLICATIONS PROSPECTS

The development of Petri nets has been, to a large extent,
motivated by the need to model the industrial systems. Or-
dinary Petri nets are not always sufficient to represent and
analyze complex industrial and other systems. This prompted
the development of new classes of nets, some of which are
introduced briefly in this section.

Tokens in the ordinary nets have no identity. This poses
some problems for modeling systems such as manufacturing
and communication systems, which require the physical re-
sources or messages, if represented by tokens, to have identity.
Without this identity, i t is impossible to trace the flow of
different resources or messages in the system. A potential
solution is to construct a model in such a way that the flow of
each resource or message is associated with a dedicated subnet.
Since the resources or messages share, in most cases, the same
system, all these subnets are identical. This approach increases

580 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 41. NO. 6. DECEMBhR 1YY4

the graphical complexity of the model. In order to address
this issue, Petri nets which allow for tokens to have distinct
identity were proposed. These nets, referred to as high-level
Petri nets, include predicate-transition nets [45 1, colored nets
[56], and nets with individual tokens 1871. In high-level Petri
nets, a token can be a compound object carrying data. This
data can be of arbitrary complexity involving integers, reals,
text strings, records, lists and tuples. A detailed discussion of
this class of nets is beyond the scope of this paper. However, it
should be noted that ordinary and high-level Petri nets have the
same descriptive power. High-level Petri nets provide much
better structuring facilities than ordinary nets. The colored
and predicate-transition nets are almost identical with respect
to their description and simulation. However, there are some
considerable differences with respect to formal analysis. The
colored Petri nets were used in numerous application areas.
These areas include communication protocols [53] , production
systems 1701, VLSI [92], etc. An important development in the
area of high-level Petri nets was the introduction of object-
oriented Petri nets, which are described in detail in 1941.
Object-oriented Petri nets can be considered as a special kind
of high level Petri nets which allow for the representation
and manipulation of an object class [161. In this class of nets,
tokens are considered as instances or tuples of instances of
object classes which are defined as lists of attributes [102].
This type of net was used to model and analyze FMS systems
121, [IO], assembly tasks [SI, and assembly systems [I] .

The recognition of the need for the qualitative specification
of the industrial control, as well as the need for representing
approximate and uncertain information has led to the devel-
opment of various types of fuzzy Petri nets. The definitions
of these nets, to a large extent, were influenced by the
various application areas. Fuzzy Petri nets have been used for
knowledge representation and reasoning [29], [44], [66]. Fuzzy
Petri nets (Petri nets with objects [94]) have been also used to
model monitoring and control of a FMS system [I O l] . Fuzzy
Programmable Logic Controllers were modeled in [SO]. Task
sequence planning in robotic assembly systems using fuzzy
Petri nets was discussed in 1211.

Ordinary Petri nets are not powerful enough for representing
and studying some of the important properties of concur-
rent systems, such as eventuality (certain transitions must
eventually fire; certain places must eventually have tokens),
and fairness (if a transition becomes firable infinitely often,
then it must fire infinitely often), for instance. In order to
address these issues, temporal Petri nets were introduced. In
this class of nets, the timing constraints are represented by the
operators of a variant of the propositional temporal logic of
linear time. Typical operators used in this class of nets are
next. henceforth, eventually, until, etc. Temporal Petri nets
were used to model and analyze a handshake daisy chain
arbiter 1971, and the alternating bit protocol [98]. The ability
of temporal Petri nets to express eventuality makes this model
suitable to represent and study the external functional behavior
of systems. This functionality is expressed in terms of the
input-output relationship, i.e., if a certain input pattern has
been established, than eventually a certain output pattern will
be generated. In 11 121. a method was proposed which allows

for the construction of nets realizing the external functionality
using less places and transitions then the original models.
This allows for the construction of the verification models of
complex systems using less places and transitions, and thus
reducing the difficulty of the formal verification tasks.

Although attempts to combine Petri nets with other tech-
niques, such as neural networks, fuzzy logic, etc., seem to be
on the increase, it appears that the use of Petri nets is still
restricted to research laboratories and academic institutions.
This situation, to a large extent, results from the lack of
widely available inexpensive software tools suitable for the
development of industrial type of systems. These types of tools
would be required to provide facilities for dealing with the
application domain specific problems at a relatively skill-free
level which would not require the knowledge of Petri nets,
and the analysis methods. The facility for translating Petri net
models to the executable code will be also essential. They
will allow for rapid prototyping of the developed systems in
the operational environment. In the past few years, a large
number of tools have been reported in the Petri net literature.
However, a majority of these tools are used mostly for research
and educational purposes. An overview of some of the Petri
net tools can be found in 1401.

Another reason why the use of Petri nets is largely confined
to academic and research institutions is the difficulty involved
in constructing Petri net models. Constructing Petri net models
of systems, especially large scale systems, is not a trivial
task. It requires a great deal of experience. No methodology
is available yet, which would allow for a fully automatic
construction of Petri net models. From our observations, in
most cases, Petri net models are constructed in an ad hoc
manner. However, attempts have been recently made to make
this particular approach more systematic. These were reported
in [381, [1 1 1 1 . In the past two decades, numerous approaches
to the systematic construction of Petri net models have been
proposed, and the work in this area still continues. These
approaches, using the terms of software engineering, can

ified into bottom-up, top-down, and hybrid
approaches [1091, [1 I I I . A comprehensive discussion of these
approaches can be found in [55]. The reuse of Petri net
models is also restricted. This is mainly due to the fact
that Petri net models are, typically, constructed on a one-off
basis. The development is, in most cases, not supported by
proper documentation. It is clear that if Petri nets were to
be widely used, especially by the industry people, methods,
and the supporting tools, allowing for an automatic or semi-
automatic construction of Petri net models from requirements
specifications would have to be developed. In the past few
years, a number of approaches have been reported which allow
for the automatic construction of restricted classes of Petri net
models from requirements specifications expressed using pro-
duction rules, flow diagrams, 5tate machines, temporal logic,
application domain dependent semi-formal languages, etc.

ACKNOWLEDGMENT

The authors greatly appreciate the comments given by A.
D. Robbi, K. Venkatesh, and H. H. Xiong.

ZURAWSKI AND ZHOC. PETRI NETS AND INDUSTRIAL APPLICATIONS: A TUTORIAL 581

REFERENCES

[I] M. Adamou, A. Bourljault, and S. Zerhouni, “Modelling and control
of flexible manufacturing assembly systems using object oriented Petri
nets,” in Proc. IEEE Int. Workshop on Emerging Technol. and Factory
Automation, Palm-Cove, Cairns, Australia, 1993, pp. 164-168.

[2j S. A. Ben, M. Moalla, M. Courvoisier, and R. Valette, “Flexible
manufacturing production system modelling using object Petri nets and
their analysis,” IMACS Symp. MCTS, Lille, France, 1991, pp. 553-560.

[3] M. Akaza, D.-I. Lee, S. Kumagai, and S. Kodama, “Application of
timed marked graphs to a scheduling problem of production systems
including repetitive processes with set-up times,” in Modern Tools for
Manufacturing Svstems, R. Zurawski, T. Dillon, Eds. Amsterdam:
Elsevier, 1993, pp. 263-277.

[4] R. Y. Al-Jaar and A. A. Desrochers, “Performance evaluation of
automated manufacturing systems using generalized stochastic Petri
nets,” IEEE TranF. Robotics and Automat., vol. 6, no. 6, pp. 621-639,
1990.

151 S. Amar, E. Crnye, and J.-C. Gentina, “A method for hierarchical
specification and prototyping of flexible manufacturing systems,” in
Proc. IEEE Workshop on Emerging Technol. and Factory Automution,
Melbourne, Australia, 1992, pp. 44-59.

[6] H. H. Ammar, S. M. Islam and S. Deng, “Performability analysis of
parallel and distributed algorithms” in Proc. IEEE Int. Workshop on
Petri Nets and Pi~rfornicrnce Models, Kyoto, Japan, 1989.

[7] Z. A. Banaszak and B. H. Krogh, “Deadlock avoidance in flexible
manufacturing systems with concurrency competing process flows,”
IEEE Trans. Robotics Automat., vol. 6, no. 6, pp. 724-734, 1990.

[8] 0. Barakat, L. Paris, J. Bourrieres, and F. Lhote, “Object oriented
modelling of assembly tasks,” IMACS Symp. MCTS, Lille. France, 1991,
pp. 638-643.

[91 M. Barbeau and G. Bochman, “A subset of Lotos with the computational
power of place/transition-nets,” in Adirznces and Theory of Petri Nets
1993, Lecture h’otes in Compurer Science. A. Marsan, Ed. Berlin:
Springer-Verlag, vol. 691, pp. 49-68.

[I O] R. Bastide and C. Silbertin-Blanc, “Modelling of flexible manufacturing
system by means of cooperative objects,” in Computer Applications
in Production and Engineering. G. Doumeingts, J. Browne, M. Toml-
janovich, Eds.

11 11 J. Bechta-Dugan and K. S. Trivedi, “Coverage modelling for depend-
ability analysis of fault-tolerant systems,” IEEE Trans. Comput., vol.
38, no. 6, pp. 775-787. 1989.

I I21 F. Belli and K.-E. Grosspietsch, “Specification of fault-lolerant systems
issues by predicate/transition nets and regular expressions-approach and
case study,” IEEE Trans. sofhvare Eng.. vol. 17, no. 6, pp. 513-526,
1991.

[131 N. Berge, M. Samaan. G. Juanole, and J. Atamna, “Methodology for
LAN modelling and analysis using Petri net based models,” in Proc.
In!. Workshop o n Modellinq, Analysis and Simulation in Telecomm. S!.st.,
MASCOT’94, Durham, NC, 1994, pp. 335-342.

[141 B. Berthomieu and M. Diaz, “Modelling and verification of time
dependent systems,” IEEE Truns. Sofhcnrc. Eng., vol. 17, no. 3 , pp.
259-273. 1991.

1 151 J. Billington, G. R. Wheeler, and M. C. Wilbur-Ham. “PROTEAN:
A high-level Petri net tool for the specification and verification of
communication protocols.” IEEE Trms. Sofrware Eng., vol. 14, no. 3,
pp. 301-31, 1988.

I 161 G. Booch, “Object-oriented development.” IEEE Trans. SofhMre Eng,,
vol. 12, no. 2, pp. 21 1-221. 1986.

I 171 K. Brand and J . Kopainsky. “Principles and engineering of process
control with Petri nets,” IEEE Tran.r.. Automat. Cont., vol. 33, no. 2.
pp. 138-149, 1988.

I 181 G. Bruno and G. Marchetto, “Process-translatable Petri nets for the rapid
prototyping of process control systems,” IEEE Trans. Software Eng.,
vol. 12, no. 2, pp. 346357, 1986.

1191 G. Bundell, “Multi-facet modelling of flexible manufacturing systems
using a minimax algebraic Petri net rcprcsentation,” in Proc. /E€€
In/. Workshop on EmerginR Technol. and Factor! Automat., Palm-Cove,
Cairns, Australia. 1993. pp. 178-187.

1201 J. Campos, G. Chiola, J . M. Colom, and M. Silva. “Properties and
performance bounds for timed marked graphs,” IEEE Trans. Circuity
and Syst.-l: Fundameritul Theory rind Applicut., vol. 39, no. 5 , pp.
386401, 1992.

1211 T. Cao and A. C. Sanderson. “Task decomposition and analysis of
assembly scquence plans using Petri nets,” Proc. .?rd Int. Conf: on
Comput. Integrated Munufacturing. Troy, NY, 1992, pp. 138-147.

1221 C. Capellmann and H. Dibold, “Petri net hased specifications of services
in an intelligent network-experiences gained from a test casc applica-

Amsterdam: Elsevier, 1991, pp. 593-600.

tion,” in Applications and Theory of Petri Nets 1993, Lecture Notes in
Computer Science, A. Marsan, Ed. Berlin: Springer-Verlag, 1993, vol.
691, pp. 543-551.

1231 L. R. Carmo and G. Juanole, “Modelling and evaluating the DQDB
protocol with stochastic timed Petri nets,” in Proc. Int. Workshop on
Modelling, Analysis and Simulation in Elecomm. Syst., MASCOT’94,
Durham, NC, 1994, pp. 269-275.

[24] S. Caselli and G. Conte, “GSPN models of concurrent architectures
with mesh topology,” in Proc. IEEE International Workshop on
Petri Nets und Performance Models, Melbourne, Australia, 1991, pp.
280-289.

1251 V. Catania, A. Puliafito, and L. Vita, “A modeling framework to evaluate
performability parameters in gracefully degrading systems,” IEEE Trans.
Ind. Electron., vol. 40, no. 5, pp. 461472 , 1993.

[26] S. Cavalieri, A. Di Stefano, and 0. Mirabella, “Optimization of acyclic
bandwith allocation exploiting the priority mechanism in the Fieldbus
data link layer,” IEEE Truns. Ind. Electron., vol. 40, no. 3, pp. 297-306,
1993.

1271 A. Chaillet, M. Combacau, and M. Courvoisier, “Specification of FMS
real-time control based on Petri nets with objects and process failure
monitoring,” in Proc. IECON’93, Hawaii.. 1993, pp. 144-149.

1281 G. Chehaibar, “Validation of phase-executed protocols modelled with
coloured Petri nets,” in Proc. 11th Int. Con6 on Applicat. and Theory of
Petri Nets, Paris, France, 1990, pp. 84-103.

1291 S. Chen, J . Ke, and J. Chang, “Knowledge representation using fumy
Petri nets,” IEEE Trans. Kno\vledge and Data Eng., vol. 2, no. 3, pp.
311-319. 1990.

[30] G. Chiola, ”A software package for the analysis of generalized stochastic
Petri net models” in Proc. IEEE h t . Workshop on Timed Petri Nets,
Torino, Italy, 1985.

[31] G. Chiola. C. Dutheillet, G. Franceschinis and S. Haddad, “Stochastic
well-formed coloured nets and symmetric modelling applications,” IEEE
Trans. Comput., vol. 42, no. I I , pp. 134:1-1360, 1993.

1321 G . Ciardo, Manual for the SPNP Package, Duke University. 1989.
[33] F. Cindo, C. Lanzarone and A. Torgano, “A Petri net model of SDL,”

in Proc. 5th European Workshop on Applicat. and Theory of Petri Nets,
Aarhus, Denmark, 1984, pp. 272-289.

[34] E. G. Coffman, M. J. Elphick, and A. Shoshani, “System deadlocks,”
Computing Surveys, vol. 3, pp. 67-78.

1351 D. Crockett, A. Desrochers. F. DiCesare, :and T. Ward, “Implementation
of a Petri net controller for a machining workstation,” in Proc. o f l E E E
Int. Conj: Robotics and Automut., Raleigh, NC, 1987, pp. 1861-1867.

I 361 R. David and H. Alla, “Autonomous and timed continuous Petri nets,”
in Advances in Petri Nets 199.1, Lecture Notes in Computer Science, G.
Rozenberg Ed.

1371 M. Diaz, “Petri net based models in the specification and verification
of protocols,” in Applications of Petri Nets 1986 Part 11, Lecture Notes
in Computer Science, W. Brauer, W. Reisig and G. Rozenberg, Eds.
Berlin: Springer-Verlag. vol. 255, pp. 135-170. 1987.

[38] F. DiCesare and A. A. Desrochers, “Modeling, control, and performance
analysis of automated manufacturing systems using Petri nets,” Control
and Dynainic Sy.stems, C. T. Leondes, Ed. New York: Academic, I99 I ,

1391 P. Dubois. ”A flexible work3hop design and optimization using
SEDRIC: A Petri net simulator,” in Pro(.. 10th Int. Conf: on Appliccit.
und Theor) of Petri Nets. Bonn, Germany, 1989, pp. 378-393.

[40] F. Feldbrugge, “Petri net tools overview 1989,” in Advances in Pefri Nets
1989, Lecture Notes In Computer Science, G. Rorenberg. Ed. Berlin:
Springer-Verlag. 1990, vol. 424, pp, 15 1-178.

(411 L. Ferrarini, “An incremental approach to logic controller design with
Petri nets.” IEEE Tran.7. Syst.. Man, and Cybern., vol. 22, no. 3 , pp.
461473, 1992.

[42] G. Florin, C. Keiser, and S. Natkin, “Petri net models of a distributed
election protocol on unidirectional ring,” in Proc. 10th Int. Coflf o n
Applicat. mid Theor3 ofpetri Nets, Bon, Germany, 1989, pp. 154-173.

[43] P. Freedman, “Time, Petri nets, and robotics.” IEEE Truns. Robotics and
Automut., vol. 7, no. 4, pp. 417433 , 1991.

[44] M. L. Garg, S. I . Ahson, and P. V. Gupta, “A fuzzy Petri net for
knowledge representation and reasoning,” I + - m . Processing Lett., vol.
39, pp. 165-171, 1991.

(451 H. J. Genrich and K. 1.autenbach. “System modelling with high-lecel
Petri nets.” Theoret. Comp. Sci., vol. 13, pp, 109-136, 1991.

1461 H . J. Genrich and R. M. Shapiro, “Formal verification of an arbiter
cascade,” in Advances und T h e o n of Petri Nets 1992, Lecture Notes
in Computer Science. Berlin: Springer-Verlag. vol. 6 16, pp. 205-223,
1992.

1471 H:M. Hanisch, “Analysis of place/transition nets with timed arcs and
its application to batch process control,” in App1ictrrion.s arid Theon. of

Berlin: Springer-Verlag, 1993, vol. 674, pp. 71-90.

vol. 47. pp. 121-172.

582 IEEE TRANSACTIONS ON INDUSrKlAL, ELECTRONICS. VOL. 41, NO 6, DECEMBER I994

Petri Nets 1993, Lecture Note.\ in Computer Science, M. A. Marsan, Ed.
Berlin: Springer-Verlag. 1993, vol. 691. pp. 282-299.

1481 D. A. Hartley and D. M. Harvey, “Analysis of the TMS320C40
coinmunication channels using timed Petri nets,” in Advance., and
Theory of Petri Nets 1993, Lecture Notes in Computer Science. A.
Marsan, Ed.

1491 H. P. Hillion and J. M. Proth, “Performance evaluation of job-shop
systems using timed-event-graphs,” IEEE Trans. Automat. Cont., vol.
34, no. I , pp. 3-9, 1989.

1501 M. A. Holliday and M. K. Vernon, “Exact performance estimates for
multiprocessor memory and bus interface,” IEEE Trans. Comput. . vol.
36, no. I , pp. 76-85. 1987.

15 11 L. E. Holloway and B. H. Krogh, ‘Synthesis of feedback control logic
for a class of controlled Petri nets,” IEEE Trans. Automat. Cont. . vol.
35, no. 5, pp. 516523, 1990.

1521 D.-Y. Hsieh and S.-<‘. Chang. “Dispatching-driven deadlock avoidance
controller synthesis ibr flexible manufacturing systems,” IEEE Trans.
Robotics and Automut., vol. 10, no. 2, pp. 196-209, 1994.

1531 P. Huber and V. Pinci, “A formal executable specification of the ISDN
basic rate interface,” in Proc. 12th Int. Con$ Applicat.and Theory of
Petri Nets, Aarhus, Iknnnark, 1991, pp. 1-21.

1541 M. A. Jafari, “An architecture for a shop-floor controller using colored
Petri nets,” Int. J. Flexible M j i . Syst., vol. 4, pp. 159-181. 1992.

15.51 M. D. Jeng and F. DiCesare, “A review of synthesis techniques for
Petri nets with applications to automated manufacturing systems,” IEEE
Trans. Syst., Man, and Cybern., vol. 23, no. I , pp. 301-312, 1993.

1.561 K . Jensen, “Coloured Petri nets and the invariant method,” Thzoret.
C o r p . Sci., vol 14, pp. 317-336, 1981.

1571 -, “Coloured Pctri nets: a high level language for system design
and analysis,” in Adlxinces in Petri Net.$ 1990, Lecture Notes in Com-
puter Science, G. Rozenberg, Ed. Berlin: Springer-Verlag, 1990, pp.
342416.

1581 G. Juanole and J . Atamna, “Petri net based models and communication
protocols,” in Modern Tools f o r Manujucturing Systems, R . Zurawski
and T. Dillon, Eds.

1591 G. Klas and C. Wincheringer, “A generaliaed stochastic Petri net model
of Multibus 11,” in Proc. CompEuro 92, The Hague, the Netherlands,
1992, pp. 406411.

(601 G. Klas, “Protocol optimiLation for a pdckecswitched bus in case of
burst traffic by means of GSPN,” in Advances and Theory of Petri
Nets 1993, Lecture Notes in Computer Science, A. Marsan, Ed. Berlin:
Springer-Verlag, 199.3, vol. 691, pp. 572-581.

161 I S. Laftts, J-M. Proth, and X. L. Xie, “Marking optimization in timed
event graphs,” in Adltmces in Petri Nets 1993, Lecture Notes in Com-
puter Science, C. Roienberg, Ed. Berlin: Springer-Verlag, 1993, vol.
674, pp. 281-299.

1621 C. A. Lakos and C. I). Keen, “Modelling layered protocols in LOOP,”
in Proc. 4th IEEE Int. Workshop on Petri Nets and Performunce Models,
Melbourne, Australia, 1991, pp. 106-1 15.

1631 D. Y. Lee and F. DiCesare. “Scheduling flexible manufacturing sys-
tems using Petri nets and heuristic search,” IEEE Trims. Robotic.\ and
Automat., vol. 10, no. 2, pp. 123-132, 1994.

1631 W. W. Lendon, R. F. Vidale. “Analysis of an Ada system using coloured
Petri nets and occurrence graphs,’’ in Applications and Theory of
Petri Nets 1992, Lecture Note.! in Computer Science. Berlin: Springer-
Verlag, 1992, vol. 616, pp. 384-388.

(651 N. G. Leveson and J. L. Stolzy, “Safety analysis using Petri nets,” IEEE
Trtms. Software Eng.. vol. 13, no. 3, pp. 386-397, 1987.

1661 C. J. Loony, “Fu~zy Petri nets for rule-based decision making,” IEEE
Trans. Syst., Man, and Cybern., vol. 18, no. I , pp. 178-183, 1988.

[67] A. M. Marsan and V. Signore, “Timed Petri net performance of fibre
optics LAN architectures.” in Proc. IEEE Int. Workshop on Petri Net.s
and Perjormance Motlels, Madison, WI, 1987, pp. 66-74.

[681 A. M. Marsan, G. Balbo, and G. Conte, Prrfirmance Evaluarion of
Midtiprocessor Systems using Petri Nets. Cambridge, MA: MIT, 1986.

1691 __, “A c l a s of generalized stochastic Petri nets for the performance
evaluation of multiprocessor systems,” ACM Trans. Comput. Syst.. vol.
2, no. 2, pp. 93-122. 19x4.

170) J . Martinez, P. Muro, and M. Silva, “Modeling, validation and software
iinplcnientation of production systems using high level Petri nets,” in
Proc. IEEE Int. Conj. Robotics and Automat.. Raleigh, NC, 1987, pp.
1180-1185.

1711 B. Mazigh and F. Simon, “Well suited modelling and evaluation
techniques based on GSPN for real production systems,” in Proc. IEEE
Int. Workshop or? Emerging Technol. and Factory Automat., Palm-Cove,
Cairns. Australia, 1993, pp. 169-176.

1721 B. McCarragher. “Robotic assembly and trajectory planning using
discrete-event modelling,” in Proc. lEEE Int. Workshop on Emerging

Berlin: Springer-Verlag, 1993, vol. 691, pp. 562-571.

Amsterdam: Elsevier, 1993, pp. 359-384.

Technol. and k’rictory Automat., Palm-Cove, Cairns, Australia, 1993, pp.
187- 196.

1731 M. K. Molloy, “Performance analysis using stochastic Petri nets,” IEEE
Trans. Comput., vol. 3, no. 9, pp. 913-917. 1982.

1741 S. Moriguchi and G. S. Shedler. “Simulation methods for logistics
systems using stochastic Petri nets,” in Modern Tools f o r Manujacturing
Systems, R. Zurawski and T. Dillon, Eds. Amsterdam: Elsevier, 1993,
pp. 289-320.

[751 S. Morioka and T. Yamdda. “Performance evaluation of marked graphs
by linear programming,” lnt. J. S.wt. Sii , vol. 22, no. 9, pp. 1541-1552,
1991.

[76) T. Murata, “Petri nets: Properties, analysis, and applications,” in P roc.
IEEE, 1989, vo l . 77, no. 4, pp. 541-580.

1771 T. Murata, B. Shenker. and S. Shatz, “Detection of ADA static deadlocks
using Petri net invariants,” IEEE Trans. Sofhvure Enx.. vol. 15, no. 3,
pp. 314-326, 1989.

(781 T. Murata, N. Komoda, K. Mdsumoto, and K. Haruna, “A Petri net
based controllei- for flexible and maintainable sequence control and its
application in factory automation,” in IEEE Trans. Ind. Electron., vol.
33, no. I, pp. 1-8, 1986.

[791 A. Nketsa and M. Courvoisier, “A Petri net based single chip pro-
grammable con~rcillcr for distributed local controls,” in Proc. IECON’YO,
1990, vol. I , pp. 542-547.

[EO] J-C. Pascal, R. Valette, and D. Andreu. “Fuzzy sequential control based
on Petri nets,“ in Proc. IEEE International Conferenw on Emerging
Technology ani1 Factory Aiitoniutirin, Melbourne, Australia, 1992, pp.
140-145.

18 I] J. L. Peterson. Petri Net Theor! und the Modeling of’Sy.stenis. Engle-
wood Cliffs, N J : Prentice-Hall, 1981.

[82] V. Pinci and It. M. Shapiro, “An integrated software development
methodology based (in hierarchical coloured Petri nets,” in Advunces
in Petri Nets 1991, Lecture N o m in Computer Science, G. Rozenberg,
Ed. Berlin: Springer-Verlag, 1991, vol. 524, pp. 227-252.

1831 H. Plunnecke and W. Reisig, “Bibliography of Petri nets 1990,” in
Advances on I’rtri Net.s 1991, Lecture Notes in Cornputer Science, G.
Rozenberg, Ed. Berlin: Springer-Verlag, 1991, vol. 524, pp. 3 17-572.

1841 C. V. Ramamoorthy, S. T. Dong, and Y. Usuda, “An implementation of
anautomated protocol synthesizer (APS) and its application to the X.2 1
protocol,” IEEE 7run.r. sofhvare Erig. , vol. 1 I , no. 9. pp. 886908, 1987.

[SS] C. V. Ramatnoorthy and G. S. Ho, “Performance evaluation of asyn-
chronous concurrent systems using Petri nets,” IEEE Trans. Sojhvure
Eng., vol. 6, 110. 5, pp. 440-449, 1980.

[86] W. Reisig, l’eiri Nets, EATCS Monographs on Theoretical Conzputer
Science

[871 -, “Petri nets with individual tokens.” Infiirmatik Fachberichfe,
vol. 66, no. 21. pp. 220-249, 1983.

[EX1 -, “Petri nets in software engineering,” in A ~ V U I I C ~ . S in Petri Nets
1986, Part 11, Lc,cture Nore.\ in C‘omputer Science, W. Brauer. W. Reisig
and G. Rozenbcrg. Eds. Berlin: Springer-Verlag, 1987, vol. 255, pp.
63-98.

[89] A. Sahraoui, H Atahakche, M. Courvoisier, and R. Valette, “Joining
Petri nets and knowledge based systems for monitoring purposes,” in
Proc. IEEE Conf Robotics cmd Autornut., 1987, pp. 1160-1 165.

1901 L. Shen, Q. Chcn, J . Y. Luh, C. Chen. and Z . Zhang, “Truncation of
Petri net models of scheduling problems for optimum solution,” in Proc.
JapcmdUSA Synip. on Flexihlv Automution, San Francisco, CA, 1992,
pp. 1681-1688.

1911 H. Shih and T. Sehiguchi. “A time Petri net and beam search based
on-line FMS scheduling system with routing flexibility,” in Proc. IEEE
Con$ on Robo1il.s und Auiomui., Sacramento, CA, I99 I , pp. 2548-2553.

[92] R. M. Shapiro, “Validation of VLSI chip using hierarchical coloured
Petri nets,” in /’roc.. l l t h 1171. Conf: Applicut. and Theory oj Petri Nets,
Paris, France, 1990.

1931 S. Shatz, K. Mai, C. Black, and S. Tu, “Design and implementation 0 1
a Petri net based toolkit for Ada tasking analysis,” IEEE Trans. Purallel
Dist. Sj>st., vol. I , no. 4, pp. 424-441, 1990.

[941 C. Sibertin-Blanc, “High level Petri nets with data structures,” in Proc.
6th European Worksh~ip on Applicut. arid Theoty ($Petri Nets, Helsinki,
Finland, 198.5.

[95l J . Sifakis, Y J w of Petri nets for pertormance evaluation.” in Mecisuring.
Modelling, and ElvA.uting Computer Sy.stcm.s. Amsterdam: 1977, pp.
75-93.

1961 V. S. Srinivasan and M. A. Jafari, “Fault detectiodmonitoring using
time Petri nets,” IE-EE Triins. Svst.. Man, and Cybern., vol. 23, no. 4,
pp. 1155-1162, 1993.

I971 I. Suzuki and H. Lu, “Tempotal Petri nets and their application to
modelling and analysis of a handshake daisy chain arbiter,’’ IEE-E Trans.
Cornput., vol. 38. no. 5, pp. 696704, 1989.

New York: Springer-Verlag. 1985, vol. 4.

ZURAWSKI AND ZHOU: PETRI NETS AND INDUSTRIAL APPLICATIONS: A TUTORIAL 5x3

1981 I. Suzuki, “Formal analysis of the alternating bit protocol by
temporal Petri nets,” IEEE Trans. Sofhtrre Eng., vol. 16, no. 1 I ,
pp. 1273-1281, 1990.

1991 T. Suzuki, S. Shatz, and T. Murata, “A protocol modelling and verifi-
cation approach based on specification language and Petri nets,” IEEE
Trans. Software Eng., vol. 16, no. 5 , pp. 523-536, 1990.

[1001 C-J. Tsai and L-C. Fu, “Modular approach for Petri net modelling of
flexible manufacturing systems adaptable to various task-flow require-
ments,” in Pro(.. o j 1992 IEEE Conf Robotics and Automat., Nice,
France, 1992, pp. 1043-1048.

[I01 I R. Valette, J. Cardoso, and D. Dubois, “Monitoring manufacturing
systems by means of Petri nets with imprecise markings,” in Proc. IEEE
In t . Symp. Inrell. Cont.. pp. 233-237, 1989.

[1021 R. Valette and M. Courvoisier, “Petri nets and artificial intelligence,”
in Modern Tool.\ for Munufacturing System.c,R. Zurawski and T. Dillon,
Eds.

[1031 N. Viswanadham, Y. Narahari, and L. Johnson, “Deadlock prevention
and avoidance in flexible manufacturing systems using Petri net mod-
els,” IEEE Trans. Robotics and Automat,, vol. 6, no. 6, pp. 713-723,
1990.

[1041 N. Viswanadhain and S. Sundar, “Distributed simulation of flexible
manufacturing systems,” in Proc. IEEE IECON’XX, Singapore, 1988,

[1051 C. J. Wang and V. P. Nelson, “Petri net performance modelling of a
modified mesh-connected parallel computer,” Paralkl Computing, vol.
17, no. I , pp. 75-84, 1991.

[1061 C.-Y. Wang and K. Trivedi, “Integration of specification for modelling
and specification for system design,” in Advances and Theory of Petri
Ners 1993, Lecture Notes in Computer Science. A. Marsan, Ed. Berlin:
Springer-Verlag. 1993, vol. 691, pp. 473491 .

[1071 E. C. Ydmalidou and J . Kantor, “Modelling and optimal control of

Amsterdam: Elsevier, pp. 385405, 1993.

pp. 895-900.

discrete-event chemical processes using Petri nets,” Comput. and Chem-
ical Eng., vol. 15, pp. 503-519, 1990.

[I081 D. Zhang. “Planning using timed Pr/T Nets,” in Proc. Japan U.S.A.
Symp. Nesibk Automat., San Francisco, CA, 1992, pp. 1179-1 184.

11091 M. C. Zhou, F. DiCesare, and A. A. Desrochers, “A hybrid methodology
for synthesis of Petri nets for manufacturing systems,” IEEE Trans.
Robotics and Automat., vol. 8, no. 3, pp. 350-361. 1992.

[I 101 M. C. Zhou, K. McDermott, and P. A. Patel. “Petri net synthesis and
analysis of an FMS cell,” IEEE Trans. Syst., Man. nnd Cyhern., vol. 23,
no. 2, pp. 523-531, 1993.

[I 1 I] M. C. Zhou and F. DiCesare, Petri Net Synthesis J;v Discrete Event
Control oj Manufacturing Systems.

[1 121 R . Zurawvki and T. Dillon, ‘Systematic construction of functional
abstractions of Petri net models of typical components of flexible
manufacturing systems,’’ in Proc. Int. Workshop on Petri Nets and
Perjormance Models, Melbourne, Australia, 1991, pp. 248-257.

11 131 -, “Modelling and verification of flexible manufacturing systems
using Petri nets,” Modern Tools for Manufacturing Systems, R. Zurawski
and T. Dillon, Eds.

Boston, MA: Kluwer, 1993.

Amsterdam: Elsevier, 1993, pp. 237-261.

Richard Zurarski (M’85). for a photograph and biography please see page
566 of this issue.

MengChu Zhou (S’88-M’90-M’90-SM’93), for a photograph and biography
please see page 566 of this issue.

