

Wireless Drifter

Summer Scholars 2004

(From Left to Right)
 Graduate Assistant: Nishant Kumar,

Advisor: Professor Yu-Dong Yao,
Robert Hudson,
Humza Shahid

Abstract

This report will describe the wireless drifter project done during the summer of

2004. It will contain information about the individual hardware components as well as

the software written to control them. The software aspect will contain information about

how the program was written as well as how it works. It will also explain the packaging

of the drifter and the overall results of the project. The report will contain information on

competitors' designs as well as the advantages of our design over theirs. A final section

will include recommendations for future development of the project.

Table of Contents

I. Introduction..1

II. System and Hardware

a. GPS Unit ..2

b. Microcontroller ..6

c. Wireless Transceiver..9

d. Integration ..11

III. Software

a. Microcontroller ..15

b. Computer..21

IV. Packaging

a. Power ...25

b. Enclosure..25

V. Test Results..26

VI. Competitors drifter designs..27

VII. Recommendations..29

VIII. Source code

a. Drifter.fs...30

b. GPS-MC Translator ...33

IX. Glossary ...38

X. References..40

 1

Introduction

 The research for summer scholars 2004 involved the development of a wireless

drifter system. Wireless drifters can be used to study ocean currents and other trends as

sea. The drifter developed consists of a GPS unit, a microcontroller, and a wireless

transceiver. Together they can be used for scientific purposes.

 Our drifter was designed to be made less expensive than any existing drifters on

the market with similar features and functions. Since we were using pre-made

components, the primary task was to interface them together properly. Using less

expensive components then allows us to market the product for a lower price than

competitors. This low price point is important, because these drifters are meant to

literally be thrown out to sea and may not be recoverable.

 For a basic overview of how a wireless drifter works, there are two main

components. The main body of the unit, which in our case contains the GPS unit,

microcontroller, transceiver, and any sensors, is thrown out into the ocean and will be

dragged along by the flow of the ocean currents. The microcontroller then gathers the

data from the GPS unit and sensors and then creates a packet and then sends it via the

transceiver back to the base. The second component of the drifter is the base unit. This

unit consists of another wireless transceiver connected to a computer which decodes and

logs the data from the packet.

 The system developed includes both of the main units listed. The software for the

microcontroller and the base computer interact to gather the data from the sensors and

GPS unit. The software was designed to eventually allow input from more than one

drifter at a time. This will allow study of larger areas of the ocean.

 2

System and Hardware

GPS Unit

 An integral part of the wireless drifter is the GPS unit. The GPS unit was the

most difficult and time consuming attachment to program. The unit itself is not very

large, and as with all other pieces requires a power source. It also needs an antenna so

that it can communicate with satellites and determine its position, the time, and some

 3

other information. All of the data sent is from the GPS is in the format of “high byte, low

byte.” It must reversed (low byte, high byte) before the computer can translate this

hexadecimal data into binary. The unit was designed to transmit several different

packets, all of which start with the message header “FF81.” The unit is able to send a

variety of different codes which are shown in the following tables. For the purposes of

the drifter, only the geodetic position information is needed. When programming the

microcontroller to utilize the GPS, only the specific information that is necessary is

stored and transmitted, the rest of the information is ignored. The data that we deemed

important from the Geodetic Position Status Output are words 19-24, and 27-32. They

are the date, time, and location data bits, which are the only pieces of information which

the drifter needs from the GPS.

Output Message Name Message ID Input Message Name Message ID

Geodetic Position Status Output (*) 1000 Geodetic Position and Velocity Initialization 1200

Channel Summary (*) 1002 User-Defined Datum Definition 1210

Visible Satellites (*) 1003 Map Datum Select 1211

Differential GPS Status 1005 Satellite Elevation Mask Control 1212

Channel Measurement 1007 Satellite Candidate Select 1213

ECEF Position Output 1009 Differential GPS Control 1214

Receiver ID (**) 1011 Cold Start Control 1216

User-Settings Output 1012 Solution Validity Criteria 1217

Built-In Test Results 1100 User-Entered Altitude Input 1219

UTC Time Mark Pulse Output (*) 1108 Application Platform Control 1220

Frequency Standard Parameters In Use 1110 Nav Configuration 1221

Power Management Duty Cycle In Use 1117 Perform Built-In Test Command 1300

Serial Port Communication Parameters In
Use 1130 Restart Command 1303

EEPROM Update 1135 Frequency Standard Input Parameters 1310

EEPROM Status 1136 Power Management Control 1317

Frequency Standard Table Output Data 1160 Serial Port Communications Parameters 1330

 4

Boot Status 1180 Factory Calibration Input 1350

Error/Status 1190 Frequency Standard Table Input Data 1360

Message Protocol Control 1331

Raw DGPS RTCM SC-104 Data 1351

Flash Reprogram Request 1380

(*) Enable by default at power-up (**) Once at power-up/reset

Message ID: 1000

Rate: Variable; defaults to 1 Hz

Message
Length: 55 words

Word
No.: Name: Type: Units: Range: Resolution:

1-4 Message Header
5 Header Checksum
6-7 Set Time (Note 1) UDI 10 msec ticks 0 to

4294967295

8 Sequence Number (Note 2) I 0 to 32767
9 Satellite Measurement Sequence Number (Note

3) I 0 to 32767
Navigation Solution Validity (10.0-10.15)

10.0 Solution Invalid - Altitude Used (Note 4) Bit 1 = true
10.1 Solution Invalid - No Differential GPS (Note 4) Bit 1 = true
10.2 Solution Invalid - Not Enough Satellites in Track

(Note 4) Bit 1 = true

10.3 Solution Invalid - Exceeded Maximum EHPE
(Note 4) Bit 1 = true

10.4 Solution Invalid - Exceeded Maximum EVPE
(Note 4) Bit 1 = true

10.5 Solution Invalid - No DR Measurements (Note 5) Bit 1 = true
10.6 Solution Invalid - No DR Calibration (Note 6) Bit 1 = true
10.7 Solution Invalid - No Concurrent DR Calibration

by GPS (Note 7)
Bit 1 = true

10.8-
10.15 Reserved
Navigation Solution Type (11.0-11.15)

11.0 Solution Type - Propagated Solution (Note 8) Bit 1 =
propagated

11.1 Solution Type - Altitude Used Bit 1 = altitude
used

11.2 Solution Type -Differential Bit 1 =
differential

11.3 Solution Type - PM Bit 1 = RF off
11.4 Solution Type - GPS (Note 9) Bit 1 = true
11.5 Solution Type - Concurrent GPS Calibrated DR

(Note 10) Bit 1 = true
11.6 Solution Type - Stored Calibration DR (Note 11) Bit 1 = true
11.7- Reserved

 5

11.15

12 Number of Measurements Used in Solution UI 0 to 12
13 Non-DR Link: Polar Navigation DR Navigation

Link: Bit 0 = Polar Navigation Bit 15 to 1 =
Hading Uncertainty Standard Deviation (Note
12)

Bit Bit UI

degrees

1 = true 1 =
true 0 to 300

0.01

14 GPS Week Number UI weeks 0 to 32767

15-16 GPS Seconds From Epoch UDI seconds 0 to 604799
17-18 GPS Nanoseconds From Epoch UDI nanosec 0 to

999999999

19 UTC Day UI days 1 to 31
20 UTC Month UI months 1 to 12
21 UTC Year UI year 1980 to 2079
22 UTC Hours UI hours 0 to 23
23 UTC Minutes UI minutes 0 to 59
24 UTC Seconds UI seconds 0 to 59
25-26 UTC Nanoseconds From Epoch UDI nanosec 0 to

999999999

27-28 Latitude DI radians ±0 to p/2 10-8

29-30 Longitude DI radians ±0 to p 10-8

31-32 Height DI meters ±0 to 50000 10-2

33 Geoidal Separation I meters ±0 to 200 10-2

34-35 Ground Speed UDI meters/sec 0 to 1000 10-2

36 True Course UI radians 0 to 2p 10-3

37 Magnetic Variation I radians ±0 to p/4 10-4

38 Climb Rate I meters/sec ±300 10-2

39 Map Datum (Note 13) UI 0 to 188 and
300 to 304

40-41 Expected Horizontal Position Error (Note 14) UDI meters 0 to
320000000 10-2

42-43 Expected Vertical Position Error (Note 14) UDI meters 0 to 250000 10-2

44-45 Expected Time Error (Note 14) UDI meters 0 to
300000000 10-2

46 Expected Horizontal Velocity Error (Note 14) UI meters/sec 0 to 10000 10-2

47-48 Clock Bias (Note 14) DI meters ±0 to
9000000 10-2

49-50 Clock Bias Standard Deviation (Note 14) DI meters ±0 to
9000000 10-2

51-52 Clock Drift (Note 14) DI m/sec ±0 to 1000 10-2

53-54 Clock Drift Standard Deviation (Note 14) DI m/sec ±0 to 1000 10-2

55 Data Checksum

 6

Microcontroller

 7

 The microcontroller used for the wireless drifter is the Gadget017 from

AMResearch. This microcontroller was chosen because of its many useful features, for a

relatively inexpensive price. We also have another microcontroller we could use, the

Gadget300, which is basically a slightly more powerful version of the Gadget017. If

necessary in the future, it is possible to switch to the Gadget300 fairly easily.

 The microcontroller contains a Cygnal C8051F017 8051 RISC chip at its heart.

This chip allows most instructions to be performed in one clock cycle, making this a very

fast chip running at 25 MHz. The chip is based off of the popular 8051 architecture. The

Gadget017 has 2304 bytes of internal data RAM, and 32,000 bytes of external Flash

RAM. This large amount of RAM is useful for storing and then processing the data that

will be gathered by the wireless drifter. It also has 8 input/output pins, which can be used

for the various sensors to be attached to the microcontroller. The I/O pins can also be

read through a 10-bit analog to digital converter, so that the microcontroller can store

data from the various pins.

 Another advantage of the Gadget017 is the free development environment

provided by AMResearch. The development environment includes an editor, compiler,

and programmer, so all of the needed development tools were included free of charge,

and included as an open source package, so the source code of the tools could easily be

modified for any necessary changes. The chip and IDE (Integrated Development

Environment) also allow for great flexibility in the programming, due to the support of

three languages: Assembler, Forth, and Basic. The IDE also allows for interpretative

execution, so that the code can be tested in real time on the microcontroller, without any

emulators or other software. This normally allows for easy debugging, however when a

 8

program is compiled as a standalone program (compiled as a turnkey program) the

interactivity is decreased.

 For more information on the Gadget017 and its related software, read its datasheet

at www.amresearch.com.

 9

Wireless Transceiver

 The wireless transceiver is another integral part of the wireless drifter. This is the

component which allows the drifter to transmit data to a pc so that it can be interpreted.

The particular chip used is the Maxstream 9XCite (www.maxstream.net) which supports

the following features, as well as many others:

• Plug-and-communicate (default mode - no configuration required).
• True peer-to-peer network (no need to configure a "Master" radio).
• Transparent mode supports existing software applications and legacy systems.
• Addressing capabilities provide for point-to-point and point-to-multipoint

networks.
• Uses Standard AT commands and/or fast binary commands for changing

parameters.
• Native RS485/422 (multi-drop bus) protocol support.
• Retry and acknowledgements of packets provides guaranteed delivery of critical

packets in difficult environments.
• Networking features allow up to 7 independent pairs (networks) to operate in

close proximity.
• Multiple low power modes including shutdown pin, cyclic sleep and serial port

sleep for current consumption as low as 20 µA.
• Host interface baud rates from 1200 to 57600 bps.

 10

• Signal strength register for link quality monitoring and debugging.
• Parity support (None, Even, Odd, Mark, Space)
• 9-bit support

The transceiver has a very simple and straightforward purpose. It takes the data sent by

the microcontroller and broadcasts it on a wireless frequency so that it can be received

and decoded by specially designed software. Another possible way to transmit data

would be to have the drifter send information to a satellite which would relay the

information to a receiver/pc, however that would be much more costly and not very

reliable when it cloudy or dark.

 11

Integration

 12

 Once all of the components needed for the wireless drifter were gathered, we had

to combine them all together. The components were linked together by the serial

communications ports they each had. The transmit line on the GPS unit was connected to

the receive line on the microcontroller, then the transmit line on the microcontroller was

connected to the receive line on the transmitter. The microcontroller also had a

temperature sensor and a light sensor attached to it. The temperature sensor is a LM34

Precision Fahrenheit Temperature Sensor from National Semiconductor, and the light

sensor is simply a photo resistor from Radio-Shack.

 The way that the components had been connected had some advantages and some

disadvantages. The main advantage was that this method did not require any

multiplexing of the serial lines, since the GPS module only transmitted to the

microcontroller, and the microcontroller only transmitted to the wireless transmitter. The

main disadvantage is that since all the communication is one way, everything must be

pre-programmed into the microcontroller, since there is no way to send it data other than

from the GPS module.

 For development purposes, the drifter was assembled on a board that allowed us

to switch from a direct serial connection to the microcontroller to the complete drifter

unit. This allowed us to easily reprogram the microcontroller without rewiring the entire

system.

 Once the development board was completed, and our program was finalized, a

prototype was built. The three main components, the microcontroller, the GPS unit, and

the transceiver, were integrated onto one circuit board. The microcontroller was

programmed on the development board, and then it was just plugged into the socket made

 13

for it on the prototype. The prototype was powered by a six volt lantern battery using this

circuit as a power regulator:

 Here are a few pictures of the completed prototype:

 14

 15

 16

Software

Microcontroller

 17

 When we started programming the microcontroller, we initially wanted to use

Basic, since it was a high level language that would allow us to easily write our program,

without worrying about the underlying hardware of the microcontroller. However, we

quickly learned that the Basic implementation provided by AMResearch was not

complete. The implementation did not allow us to access memory locations within the

microcontroller, which was necessary to allow us to create a packet of all the gathered

data. Another limitation was that all the variables that were to be used had to be declared

in the basic.fs file (the forth implementation of the basic language given to us by

AMResearch). Due to these limitations, we were forced to use Forth to program the

microcontroller.

 Forth is a very powerful language. It allows for high level programming, but with

low level access. It even allows you to use in-line assembly code within your program,

making the possibilities almost endless. The major drawback is that it is completely

stack orientated, so the programmer has to be very careful of the hardware's current

settings and stack operations. Therefore, it actually allows you to program at a high

level, but you must monitor the low level results of your code. Because of the stack

orientation, all operations in forth are in postfix notation (AKA reverse Polish notation).

This was a very different concept for us, so we had to learn not only the forth language,

but also how to do operations in postfix.

 As stated in the preceding paragraph, the main program was written in Forth,

using the AMRForth program provided by the manufacturer of the microcontroller. The

program was written in its built-in editor, and compiled as a turnkey program. Compiling

as a turnkey program allows the program to be executed, starting at the "go" statement,

 18

continually, without interaction from the computer. If the program is compiled normally,

the microcontroller is treated as a tethered computer, meaning it will not function

correctly without input from the computer.

Minimal modifications were made to the kernel and library provided by the

software, but the few that were made were necessary. In the kernel, four lines were

removed, since they were causing problems with the "key" function used to read data

over the serial port on the microcontroller. In the file "kernel8051.fs" (the actual kernel

of the microcontroller's operating system) lines 829 through 832 were commented out.

Those lines were the redefinitions of "key" and "key?", which were removed as a

suggestion by one of the programmers at AMResearch, after we contacted them when we

were having problems with the key function.

The library, file "adc017.fs," was modified to allow use of the built in temperature

sensor, and to allow for easy initialization of the other analog input pins contained on the

microcontroller. The modified file's source code is included in the appendix of this

paper. We changed the init files so that we could use two pins. One init function, "init-

adc-temp" initialized the pin for the temperature sensor, while another, "init-adc-ain0"

allowed us to use the light sensor. We then modified the "adc10@" function, which gave

us the value received from whatever sensor the microcontroller was initialized to.

The microcontroller's program consisted of two main sections. Since it was

compiled as a turnkey program, the "go" function was always started automatically.

Right after the program started, it initialized itself, which is the first main section.

Initialization took place in lines 4 to 22, as shown in the appendix for the file "drifter.fs"

(the name given to our program file). After initialization, the program entered the main

 19

loop, which was an infinite loop by design. We made it an infinite loop, since we wanted

the program to run continuously without any interaction when it was actually in use. The

loop is the longest section of code, since it occurs in lines 23 to 121.

Before explaining the procedures the program goes through, it would be best to

explain the various commands used in forth. As stated before, Forth is written in postfix

notation, so keep that in mind when using the commands. Since one of the main uses of

the program is to store and translate data, memory access is a widely used command in

the program. The operators "!d" and "c!d" are used to store data to an external memory

location. They store two bytes and one byte respectively. The operators "@d" and

"c@d" read from an external memory location. As before, "@d" reads two bytes, while

"c@d" reads only one. Another widely used command is "emit" which sends the top of

the data stack (one byte) as an ASCII character out via the serial port. This is used to

transmit the assembled packet. One last main function is the "key" function. It reads one

character over the serial port and adds it to the top of the data stack. All the other

functions we used are simple for-next loops and if statements.

The initialization stage of the program consists of clearing the memory locations

used for storing the raw data from the GPS unit, and the locations used for the assembled

packet. It also clears out the memory location used as a counter in the for-next loops in

the main loop.

The main loop starts off by taking the measurements from the temperature sensor

and the light sensor, and placing the data directly into the packet, so that whenever the

packet is fully assembled, it can be sent without waiting for that data. The program then

goes through a nested set of if statements, while it looks for the Geodetic Position Status

 20

Output header from the GPS unit. The microcontroller reads the headers one byte at a

time using the "key" function, lines 29 to 36. The header for the Geodetic Position Status

Output in decimal is "255,129,232,3" so once it finds that exact sequence, the program

starts to take the raw position data from the GPS unit and stores it temporarily in

memory, lines 40-44.

After completely storing the raw GPS data, the program starts to create the

packet. The header code we picked to use was equal to "AB CD" in hexadecimal (171,

205 in decimal), lines 47 and 48. This value is arbitrary; we just picked something that

would be easy to remember and not as likely to be repeated in the position statement.

The next value inserted into the packet is the drifter number, lines 49 and 50. This has to

be hard coded into each drifter for the time being. It is also in the low-byte/high-byte

form, since that is how the Visual Basic program we wrote reads the information. Next

comes the GPS time/date information, along with the location information, lines 52 to 78.

Since the raw data was stored completely in the microcontroller's memory, we simply

matched up the locations between the raw data, and where the packet was to be stored.

For example, the value for the day information from the GPS unit was stored in memory

locations 332 and 333. We then took the value stored in location 332 and transferred it to

the location of the day information in the packet, which was 2004, and we did the same

for 333, moving it to location 2005. We did this for the rest of the needed information.

After the packet was created, we transmitted the packet using the "emit" command for

each byte in the packet, lines 81 to 113. Finally, we inserted a pause, so that the program

would save some battery life, by only transmitting at a certain period. To change the

interval, simply change the numbers in the for-next statements in line 115. Each number

 21

can only be two bytes in length, so having two nested statements was necessary to give

the correct delay. After the delay, the program loops again to continue gathering data.

 22

Computer

 23

 The software written for a computer to read the data transmitted from the

microcontroller was written using Microsoft visual basic 6. The program was based upon

our initial GPS data reading program. After heavy modifications the program was able to

work in conjunction with the microcontroller to a near perfect degree of functionality.

 The first few tasks were simple. After creation of the form, the MSComm1

control was created and its values were initialized to 9600 kbps, 8 data bits, no parity, and

1 stop bit. The RThreshold is set to 30 bytes, the length of the packet that the

microcontroller sends. It is designed so that once the entire packet is in the serial port

buffer the OnComm event will be triggered. The buffer is cleared and then the port is

opened to receive data as soon as the program is started. At this time, we have the

program open a simple text file “log.txt” which will be used for saving a simply

formatted version of the data it receives every minute. In future versions the user will

most likely be given the option to choose the location and name of the file where the data

will be saved. A true-false value is also set when the form is loaded. This value will help

notify the user if there is an error in making a connection to the wireless drifter.

 A timer is set which will change the true-false value if there is no data received

within a certain amount of time. This value is dependent on how frequently the

microcontroller sends data, and as such, must be modified according to how frequently

the microcontroller sends data. For this program we set the timers length to the time it

would take to receive two packets of data from the microcontroller.

 The packet sent by the microcontroller, which has been designed by us, is

designed to send us all of the information needed in as little space as possible. The

packet consists of a header (ABCD), drifter ID number, and then it contains GPS data,

 24

temperature sensor data, and light sensor data. The data is received in high byte then low

byte, which must be reversed before it is useful to us. The data is in hex, which is

translated by a function called “nHexToDec” which was obtained online. All credit for

writing this function goes to the author, Cristian Calugar. We decided to use this

function instead of write our own due to time constraints. It would be much quicker to

use an already created function than to learn how to do the translation in visual basic

ourselves.

 The most important function of the software, however, is one called “getData.”

The getData function is used throughout the entire program to read information from the

serial port buffer so that it can be translated into data that is useful to us. Because of the

nature of VB, get data had to be specially modified so that even when the data was

preceded by a zero (such as 01), the zero would not be cut off as VB normally does. To

fix this issue, VB is told to check the length of the string. If it is a length of one, it adds a

zero to the beginning of the string. If it is a length of two then the string is left alone.

GetData also performs another key function; it reverses the order of the bytes so that they

can be translated from hex to decimal.

 The program has been designed to wait for data to be received from the serial port

before it takes any action except for its error checking function which is always running.

When data is found on the serial port buffer, the program goes into action and starts to

translate the information which has been received. It first searches for the message

header “AB CD”. Once the header has been found it will take the next two bytes as the

drifter ID number, and then it knows that the next twelve bytes are the GPS data which

correspond to date and time. The next twelve bytes are probably the most important

 25

bytes in the entire program. These bytes give the location of the drifter as provided by

the GPS unit. They are given in the order of Latitude, Longitude, and then Height. The

temperature sensor data is given next, and then finally the light sensor. Latitude,

Longitude, and Height are all four bytes each, and must be read using 2’s complement.

The temperature sensor needs a simple equation to calibrate it properly, and the light

sensor is fine as is.

 Once all of the data has been obtained from the microcontroller and translated, it

is then stored in the log file (currently log.txt) in the following format:

 Drifter ID Number
 Date
 Time
 Latitude
 Longitude
 Height
 Temperature
 Light Intensity

 The programs GUI was designed to be small and compact, but at the same time,

full of information. All of the information obtained from the drifter unit is displayed on

screen in an easily readable fashion. The small screen area allows for many more

additions to be added in the future, and as most computers run only moderately high

resolutions, it will not look too small on your average pc. The error message is a sort of

popup box which will be displayed in the center of the main program screen if there is no

connection with the drifter.

 Lastly, the exit button has been coded so that it will make sure the serial port is

closed (so that no problems will occur with the pc after the software is shut down).

Clicking on the x in the top left corner will do the same job as clicking exit, as both have

been coded to do the same thing.

 26

Packaging

Enclosure

 The enclosure for the drifter unit will be designed to be waterproof. We intend to

make it clear because in the future, solar power will most likely be used to power the

drifter and extend its lifetime. The overall size will be small to save costs and allow the

drifter to move with the current more freely. A “tail” will be attached to the drifter which

will hang underwater allowing the drifter to flow with the underwater currents instead of

the surface current.

Power

 The drifter will be powered by an alkaline lantern battery, because we will be

including a voltage regulation circuit so that each component will get the voltage it needs.

In future models, a solar panel will be used to charge a battery, so that the drifter will

have a longer lifetime.

 27

Test Results

 Using the assembled prototype, the system was given a test run. We walked

around campus with the prototype and a laptop with the receiver attached to it. The

laptop then logged all the data from the prototype drifter. This test had mixed results.

The temperature sensor and light sensor worked perfectly, as cloud cover and shade

changed the light sensor's readings, and sun and breezes changed the temperature sensors

values. The GPS location was almost perfect. The latitude and longitude changed

correctly as we moved, however the height values were incorrect. The height was

reported as a negative value for the majority of the readings. This is most likely caused

by a small bug in the translation software; however there is also a chance that the GPS

unit had just not calibrated correctly.

 As this was the first actual test of the unit, it performed better than expected. The

prototype functioned correctly, with no apparent problems. Only some minor bug fixes

are needed in the software, which should not take very long.

 28

Competitors' Drifter Designs

 The purpose of this research was to develop a wireless drifter that could be

marketed successfully against other competing designs. Our goal was to produce a

design that had all of the features of the more expensive drifters at a fraction of the cost.

Of course it’s not possible to have every feature of the more expensive models, but it still

has similar functionality.

 The highest end drifters can cost approximately $4500. These drifters are much

larger than our design, and also more powerful. They use the ARGOS satellite system to

transmit and receive data; therefore they can be used on a more global scale than our

current design. However, due to their larger size they are more difficult to disperse and

collect.

 Another type of drifter, which is closest to our design, was developed at Texas

A&M University-Corpus Christi. It was assembled for approximately $500. It has the

same functions as our design, with the exception of the light and temperature sensors we

have included. They used a more expensive microcontroller than us, causing the increase

in price. The expensive microcontroller allowed programming in C, which made

programming slightly easier, but all the functions can still be made in forth.

 The drifter we created has most of the functions of all the more expensive drifters,

but for only a fraction of a price. We should be able to produce and sell the drifters for

about $300. This price advantage almost makes the drifters expendable, unlike the $4500

ones. This also makes the technology accessible to more consumers, and allows even

more research on ocean currents to be performed. The drifter also can be upgraded in the

 29

future, since it is made of off-the-shelf components. Therefore, our goals for the creation

of a marketable wireless drifter have been met.

 30

Recommendations

The following is a list of possible changes that could be made to enhance the

usefulness of the wireless drifter.

• Allow multiplexing in serial communications so that on the fly reprogramming

can be done.

• Allow more than one drifter to communicate with each other so that only one

would have to transmit to the base, allowing for the “transmitter” to be equipped

with a more powerful antenna.

• Add a checksum to the packet to ensure accuracy of the data received.

• Encrypt data to ensure privacy.

• Use alternate power source, such as solar power.

• Make modular code so that new functions can be added easily.

• Include a larger size memory unit such as a mini-hard drive or flash drive to store

data for longer periods of time.

• Use a higher power antenna so that longer transmit ranges are available.

• Add other sensors such as pollution and sound sensors.

• Develop another application (or an add-on to the current one) which takes the

GPS data and plots it on a map, for a visual representation of the drifter's

movements.

 31

Source Code

Microcontroller Program (Drifter.fs)

\ drifter.fs 1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

: go
 \ Clear memory locations that will be used
 0 260 !d
 106 for
 0 300 260 @d + c!d

 260 @d 1 + 260 !d
 next

 \ init-adc-ain1

 0 260 !d
 28 for
 0 2000 260 @d + c!d

 260 @d 1 + 260 !d
 next

 0 260 !d \ reset counter

 begin
 init-adc-ain1
 adc10@ 2028 !d
 init-adc-ain0
 adc10@ 2030 !d

 key
 255 = if
 key
 129 = if
 key
 232 = if
 key
 3 = if

 0 260 !d

 \ This for loop reads data from the gps and stores it to memory
 106 for
 key 300 260 @d + c!d

 32

 260 @d 1 + 260 !d 43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

 next

 \ This is the packet header
 171 2000 c!d \ AB
 205 2001 c!d \ CD
 1 2002 c!d \ These two lines are the drifter ID #
 0 2003 c!d

 \ This is where the GPS time/date data is stored
 332 c@d 2004 c!d \ day
 333 c@d 2005 c!d
 334 c@d 2006 c!d \ month
 335 c@d 2007 c!d
 336 c@d 2008 c!d \ year
 337 c@d 2009 c!d
 338 c@d 2010 c!d \ hour
 339 c@d 2011 c!d
 340 c@d 2012 c!d \ minute
 341 c@d 2013 c!d
 342 c@d 2014 c!d \ second
 343 c@d 2015 c!d

 \ This is where the actual location data is stored
 348 c@d 2016 c!d \ latitude
 349 c@d 2017 c!d
 350 c@d 2018 c!d
 351 c@d 2019 c!d
 352 c@d 2020 c!d \ longitude
 353 c@d 2021 c!d
 354 c@d 2022 c!d
 355 c@d 2023 c!d
 356 c@d 2024 c!d \ height
 357 c@d 2025 c!d
 358 c@d 2026 c!d
 359 c@d 2027 c!d

 \ this is the actual transmitting of the packet
 2000 c@d emit
 2001 c@d emit
 2002 c@d emit
 2003 c@d emit
 2004 c@d emit
 2005 c@d emit
 2006 c@d emit

 33

 2007 c@d emit 89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

 2008 c@d emit
 2009 c@d emit
 2010 c@d emit
 2011 c@d emit
 2012 c@d emit
 2013 c@d emit
 2014 c@d emit
 2015 c@d emit
 2016 c@d emit
 2017 c@d emit
 2018 c@d emit
 2019 c@d emit
 2020 c@d emit
 2021 c@d emit
 2022 c@d emit
 2023 c@d emit
 2024 c@d emit
 2025 c@d emit
 2026 c@d emit
 2027 c@d emit
 2029 c@d emit \ temp data in low/high form
 2028 c@d emit
 2031 c@d emit \ light data in low/high form
 2030 c@d emit

 500 for 1000 for noop next next
 then \ end of if 3
 then \ end of if 232
 then \ end of if 129
 then \ end of if 255

 again
-;

 34

GPS-MC Translator Program

Option Explicit 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Dim blnError As Boolean
Dim intCounter As Integer

Private Sub cmdExit_Click()
 Unload Me
End Sub

Private Sub Form_Unload(Cancel As Integer)
 MSComm1.PortOpen = False ' Closes the port
 Close #1
 Unload Error
End Sub

Private Sub Form_Load() ' MSComm component initialization
 MSComm1.RThreshold = 30
 MSComm1.CommPort = 1 ' Sets the port to be used to COM1
 MSComm1.InputLen = 1 ' Sets the input length to 1 character
 MSComm1.InputMode = comInputModeText ' Sets the input type to text
 MSComm1.Settings = "9600,n,8,1" ' Sets the baud to 9600, no parity, 8

' data bits, 1 stop bit
 MSComm1.PortOpen = True ' Opens the port
 MSComm1.InBufferCount = 0 ' Makes sure the buffer is empty

' before data is received

 blnError = True
 Error.Visible = False
 Open "log.txt" For Append As #1
 intCounter = -1
End Sub

Private Function getData() As String ' This function reads from the GPS unit

' and translates the data stream into hex
 Dim str1 As String, str2 As String ' it takes in 2 characters (4 hex symbols) and

' reverses them, so that the data can be
' translated

 str1 = Hex$(Asc(MSComm1.Input))
 If Len(str1) = 1 Then
 str1 = "0" + str1
 End If
 str2 = Hex$(Asc(MSComm1.Input))
 If Len(str2) = 1 Then
 str2 = "0" + str2

 35

 End If 46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

 getData = (str2 + str1)
End Function

Private Sub Timer1_Timer()
 If blnError Then
 Error.Visible = True
 End If
End Sub

Private Sub MSComm1_OnComm()

 If MSComm1.CommEvent = comEvReceive Then
 blnError = False
 Error.Visible = False

 Dim strHex As String
 Dim strHex2 As String
 Dim strTest As String
 strTest = MSComm1.Input

 If strTest = "" Then
 Error.Visible = True
 Else
 Error.Visible = False
 strHex = Hex$(Asc(strTest)) ' takes the received data, turns it into its

' ascii value, then into its hex value

 If Len(strHex) = 1 Then
 strHex = "0" + strHex
 End If
 If strHex = "AB" Then
 strHex2 = Hex$(Asc(MSComm1.Input))
 If Len(strHex2) = 1 Then
 strHex2 = "0" + strHex2
 End If

 If strHex2 = "CD" Then
 Dim intMinute As InputModeConstants

 lblDrifter.Caption = nHexToDec(getData())
 lblDay.Caption = Format(nHexToDec(getData()), "#00")
 lblMonth.Caption = Format(nHexToDec(getData()), "#00")
 lblYear.Caption = Format(nHexToDec(getData()), "#00")
 lblHour.Caption = Format(nHexToDec(getData()), "#00")

 36

 intMinute = nHexToDec(getData()) 92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

 lblMinute.Caption = Format(intMinute, "#00")
 lblSecond.Caption = Format(nHexToDec(getData()), "#00")

 Dim dblLat As Double
 Dim dblLon As Double
 Dim dblHeight As Double

 Dim s1 As String
 Dim s2 As String
 Dim s As String

 s1 = getData()
 s2 = getData()
 s = s2 + s1

 If nHexToDec(s) < 2147483647 Then ' words 27 and 28
 dblLat = (nHexToDec(s) / 100) * (180 / 3.141592654)
 Else
 dblLat = -1 * ((42949672.95 - (nHexToDec(s) / 100) + 0.01) * (180 /

3.141592654)) 'words 27-28
 End If

 dblLat = dblLat / 1000000

 s1 = getData()
 s2 = getData()
 s = s2 + s1

 If nHexToDec(s) < 2147483647 Then 'words 29 and 30
 dblLon = (nHexToDec(s) / 100) * (180 / 3.141592654)
 Else
 dblLon = -1 * ((42949672.95 - (nHexToDec(s) / 100) + 0.01) * (180 /

3.141592654)) 'words 29-30
 End If

 dblLon = dblLon / 1000000

 s1 = getData()
 s2 = getData()

 s = s2 + s1

 If nHexToDec(s) < 2147483647 Then 'words 31 and 32
 dblHeight = nHexToDec(s) / 100

 37

 Else 138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

 dblHeight = -1 * (42949672.95 - (nHexToDec(s) / 100) + 0.01)
 End If

 lblLat.Caption = Format(dblLat, "#.0000")
 lblLon.Caption = Format(dblLon, "#.0000")
 lblHeight.Caption = Format(dblHeight, "#.00")

 Dim strTemp As String
 Dim intTemp As Integer
 Dim strLux As String
 Dim intLux As Integer

 strTemp = getData()
 intTemp = nHexToDec(strTemp)
 lblTemp = Format((intTemp + 87) / 5.2, "#.00")

 strLux = getData()
 intLux = nHexToDec(strLux)
 lblLux = Format(1023 - intLux, "#.00")

 If intCounter <> intMinute Then
 intCounter = intMinute
 Print #1, lblDrifter.Caption + vbCrLf + lblMonth.Caption + "/" +

lblDay.Caption + "/" + lblYear.Caption + vbCrLf + lblHour.Caption + ":" +
lblMinute.Caption + ":" + lblSecond.Caption + vbCrLf + lblLat.Caption + vbCrLf +
lblLon.Caption + vbCrLf + lblHeight.Caption + vbCrLf + lblTemp.Caption +
vbCrLf + lblLux.Caption + vbCrLf

 End If 'intCounter <> intMinute
 End If 'CD
 End If 'AB
 End If 'strTest
 Timer1.Enabled = False
 Timer1.Enabled = True
 End If 'MSComm1.CommEvent
 blnError = True
End Sub

'***
' Name: Convert hex to decimal (big values)
'
' Description:Convert big hex values to decimal numbers.
'
' By: Cristian Calugar
'

 38

' Inputs:Hex value (up to 12 bytes). 184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

'
' Returns:Decimal number (up to 29 digits)
'
'
'This code is copyrighted and has' limited warranties. Please see http://w
' ww.Planet-Source-Code.com/vb/scripts/Sho
' wCode.asp?txtCodeId=49991&lngWId=1'for details.
'***

Public Function nHexToDec(sSource As String) As Variant
 '**
 ' Name: nHexToDec
 ' Author : Cristian Calugar
 ' Comments:
 ' Max. accurate is nHexToDec(string(24,"F"))
 '
 ' Result: 79,228,162,514,264,325,024,342,547,895
 '**
 Dim i As Integer, iVal As Byte

 If (Trim$(sSource) = "") Then
 nHexToDec = 0
 Exit Function
 End If

 nHexToDec = 0

 For i = 1 To Len(sSource)
 iVal = CByte("&h" & Mid$(sSource, i, 1))
 nHexToDec = CDec(nHexToDec + iVal * 16 ^ (Len(sSource) - i))
 Next i

End Function

 39

Glossary

Forth – The programming language used to program the Microcontroller. Forth uses

postfix for carrying out operations because it works around a central “stack” which

contains the data. As such, the addition of “2 + 1” would be written “2 1 +”

Gadget017 – The name of the microcontroller used in the wireless drifter described in the

paper. It contains a Cygnal C8051F017 microprocessor based on the 8051

architecture.

GPS Unit – A receiver that takes signals from the Global Positioning System satellites

that orbit the Earth and translates them into the location of the unit. This system

can pinpoint the latitude, longitude, and height of the unit with an accuracy of a few

meters.

Microcontroller – An embedded processor that is used to collect and analyze data. The

one used in the wireless drifter described in this paper is the Gadget017. A

microcontroller contains the software to control the unit, along with the processor to

make decisions based on the information gathered.

Transceiver – A piece of equipment that sends and receives signals over a wireless

frequency.

Visual Basic – A powerful and robust programming language developed by Microsoft.

Called VB for short, it allows programmers to quickly and easily create in-depth

graphical user interfaces so that more time can be spent to develop functions and

features in the code.

Wireless Drifter – The focus of this paper. The one described in the paper consists of a

GPS unit, a microcontroller, and a transceiver. The microcontroller gathers data

 40

from the various onboard sensors and the GPS unit, and transmits the collected data

via the transceiver.

 41

References

http://www.maxstream.net

http://www.amresearch.com

http://www.conexant.com

http://msdn.microsoft.com/vbasic

http://www.planet-source-

code.com/vb/scripts/ShowCode.asp?txtCodeId=49991&lngWId=1

http://www.silabs.com/products/microcontroller/mixsig_matrix.asp

http://www.national.com/pf/LM/LM34.html#Datasheet

http://vathena.arc.nasa.gov/curric/oceans/drifters/drifters.html

http://www.cbi.tamucc.edu/Publications/Proceedings/Perez_etal%20IEEE_CMTC.pdf

