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SUMMARY

The characteristic highly nonlinear, time-dependent, and often inelastic material response of soft biological
tissues can be expressed in a set of elastic–viscoplastic constitutive equations. The specific elastic–
viscoplastic model for soft tissues proposed by Rubin and Bodner (2002) is generalized with respect to the
constitutive equations for the scalar quantity of the rate of inelasticity and the hardening parameter in order to
represent a general framework for elastic–viscoplastic models. A strongly objective integration scheme and
a new mixed finite element formulation were developed based on the introduction of the relative deformation
gradient—the deformation mapping between the last converged and current configurations. The numerical
implementation of both the generalized framework and the specific Rubin and Bodner model is presented. As
an example of a challenging application of the new model equations, the mechanical response of facial skin
tissue is characterized through an experimental campaign based on the suction method. The measurement
data are used for the identification of a suitable set of model parameters that well represents the experimen-
tally observed tissue behavior. Two different measurement protocols were defined to address specific tissue
properties with respect to the instantaneous tissue response, inelasticity, and tissue recovery. Copyright ©
2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Understanding the mechanical response of soft biological tissues is essential in the development of
computational tools to enable physically based simulations for realistic applications in the medical
field. This includes the planning of surgical interventions, the design of biocompatible prosthetic
devices and implants, and the quantitative evaluation of different medical treatments with respect
to faster healing of diseased and damaged tissue. Mathematical modeling in general and the finite
element (FE) method in particular are crucial tools in understanding the mechanical response of soft
biological tissues. Specifically, the FE method can be used in simulations of organs and systems
of organs at increasing levels of complexity with respect to the level of structural representation,
material models across different length scales, interaction of multiple tissue structures, and the type
of medical application.

Generally speaking, soft tissues differ by their specific composition of mostly collagen, elastin,
and a hydrated matrix of proteoglycans, as well as other constituents depending on their individ-
ual functionality. Experimental observations have shown that soft biological tissues exhibit a highly
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nonlinear response, pronounced anisotropy, heterogeneous and large deformation upon physiolog-
ical loading, hysteresis, and often a poroelastic and (nearly) incompressible material response [1].
Additionally, soft biological tissues exhibit a strong time-dependent and history-dependent behavior
governed by fluid flow through porous fibrous networks, presence of transient fiber network connec-
tions, and inherent time-dependent behavior of tissue components (e.g., elastin and collagen) [2].
Alongside these effects, tissues undergo different forms of morphological changes over time, lead-
ing to irreversible deformations and altered morphology. Such effects are seen in pre-conditioning
in cyclically loaded soft tissues [1, 3, 4]; stress relaxation at constant strain [5]; growth of skin,
heart, tumor, and muscle tissues [6–8]; softening of stretched tissue [4, 9, 10]; damage [11–14]; and
collagen turnover, remodeling, and aging [15–18].

In constitutive modeling of time-dependent and history-dependent material, the mechanical
behavior is generally differentiated by viscoelasticity and inelasticity. Among the most frequently
used formulations for rate-dependent stress response of soft biological tissues are Fung-type quasi-
linear viscoelastic models [1]. The extensive flexibility with respect to constitutive formulations for
the rate of instantaneous elastic stress and the reduced relaxation function in the hereditary integral
of the viscoelastic stress inspired several specific formulations for tendons [19, 20], collagenous
tissue [21], skin [22], human liver [23], and ligaments [24] among many other applications. How-
ever, these models are of purely phenomenological nature and often fail to properly describe the
characteristic highly nonlinear behavior [20].

Another common approach was adopted for studying skin tissue [22], as well as viscoelastic soft
fiber-reinforced composites [25] and the cornea [26], which is based on a multiplicative decom-
position of the deformation gradient into an elastic and viscous part. In this approach, evolution
equations are determined for strain-like internal variables. In contrast, work has been presented
in formulating rate equations for stress-like internal variables solved by means of convolution
equations, as presented by Holzapfel and Simo [27] and Govindjee and Reese [28]. Applications of
this approach were presented by Holzapfel et al. [29, 30] for arterial tissue, as well as by Peña et al.
[31, 32] for ligaments.

Despite several well-justified constitutive assumptions, viscoelasticity fails to describe the
strongly apparent inelastic response of soft biological tissues [1]. Literature provides experimental
evidence for several different softening phenomena related to damage and loading beyond the physi-
ological state of tissue (e.g., [33–35] and references therein). Constitutive models for the description
of irreversible alterations of tissue on the structural level have been proposed for fiber-reinforced
tissues [36, 37] alongside the aforementioned work. The respective work has revealed a similar
softening behavior as it was described by Mullins [38] for rubber-like materials, in particular for
modeling tissues beyond their physiological limit [33]. Furthermore, softening in soft tissues is
related to transient adaptation of tissue structure to certain loads, maturation, remodeling, and fiber
reorientation. Preconditioning due to cyclic loading of tissues [3, 39], as well as creep [40] and
skin relaxation experiments [41], demonstrates the necessity to include different softening mecha-
nisms when aiming at realistic modeling of soft tissues [4, 19, 33, 42, 43]. However, a final aspect
often related to softening is residual strains accumulating not only in the pathological but also in the
physiological regime. Different work is presented in the literature expressing tissue softening and
corresponding irreversible deformations within mathematical formulations [10, 44–46], as well as
in combination with damage models [36, 47–49].

To the best of the author’s knowledge, few works have been presented on the basis of elastic–
viscoplastic theory despite the significant freedom of capturing nearly all of the characteristic
properties of soft biological tissues (e.g., [46, 50]). In the work presented by Rubin and Bodner [46],
the elastic strain part as well as the dissipative tissue response is governed by evolution equations.
This model considers the typically observed accumulation of residual strain and softening behavior
from the first loading cycle onwards. Moreover, the constitutive equations are formulated in terms
of the deformed metric, recognizing the fact that elastic deformation should be associated with the
current configuration during plastic flow [51–54]. In recent years, the Rubin and Bodner model was
adopted for FE modeling of facial tissues [41, 55].

The objective of the present paper is the mathematical formulation of a set of generalized elastic–
viscoplastic constitutive equations for the inelastic modeling of soft biological tissues within a
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corresponding FE formulation. In particular, constitutive equations that are based on the rate forms
of the deformation measures require a strongly objective integration scheme and a proper FE for-
mulation. For this reason, a new mixed formulation is proposed that is formulated in terms of the
last converged and current configurations. In view of these configurations, the relative deforma-
tion gradient is introduced, which plays a crucial role in all subsequent derivations presented in
this paper.

The outline of the paper is as follows. Section 2 presents a generalized framework for the elastic–
viscoplastic constitutive formulation of soft biological tissues and summarizes the constitutive
model equations introduced by Rubin and Bodner [46]. Section 3 presents the strongly objective
integration scheme, and in Section 4, the consistent spatial tangent moduli are derived. In Section 5,
the new mixed FE formulation is introduced. Section 6 presents the validation for the FE formulation
through standard tests, and Section 7 describes an experimental campaign of Cutometer measure-
ments, which is used to demonstrate a procedure to determine a set of model parameters for facial
skin tissue. Finally, Section 8 summarizes and concludes the present study.

2. CONSTITUTIVE MODEL FORMULATION

By way of background, let X‡ denote the location of a material point in the reference configuration, x
the location of the same material point in the present configuration at time t , and v D Px the absolute
velocity of a material point. Here and throughout the text, a superposed dot is used to denote material
time differentiation, where X is fixed. Furthermore, let F D @x=@X be the deformation gradient,
l D @v=@x be the velocity gradient, d D .lC lT/=2 be the rate of deformation tensor, and b D FFT

be the total deformation tensor.
Following the work of Eckart [51], Besseling [56], Leonov [57], and Rubin et al. [46, 52], it

is possible to model inelastic response by introducing an elastic distortional deformation tensor
associated with a dissipative response as a primary quantity governed by an evolution equation. In
particular, the total dilatation J , the measure of the total elastic distortional deformation b0, and the
elastic distortional deformation associated with the dissipative component b0

de
are specified by the

following evolution equations [46]:

PJ D JdW I;

Pb0 D lb0 C b0lT �
2

3
.dW I/b0;

Pb0de D lb0de C b0del
T �

2

3
.dW I/b0de � �ad ; ad D b0de �

3

b0�1
de
W I

I;

(1)

where the first two evolution equations in (1) control the elastic response, while the third evolution
equation controls the inelastic response. Specifically, the term �ad in (1c) models the rate of inelas-
tic deformation, with ad being the direction of inelastic flow and � being the magnitude of the rate
of inelasticity. In this regard, it is noted that when �ad vanishes, the dissipative component responds
elastically. Furthermore, the form of the symmetric tensor ad in (1d ) is one of the simplest forms,
which ensures the elastic distortional deformation tensor associated with the dissipative component,
b0
de

, to remain a unimodular tensor and to evolve toward the value I.

2.1. General elastic–viscoplastic constitutive equations for soft biological tissue

In this section, the scalar of the rate of inelasticity as well as the hardening parameter are presented
in a general form because these mechanical mechanisms are usually tissue dependent. Based on
experimental observations of a specific tissue (e.g., the Rubin and Bodner model for facial tissue),
one can propose an explicit form for the functions � and P̌. Specifically, the nonnegative function
� is proposed in the following general form

‡Please see Appendix A for a list of variables and symbols.
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� D b�.P"; ˇ; ˇde/; (2)

where P" is the effective total distortional deformation rate and ˇde is the effective elastic distortion
strain associated with the dissipative component. The magnitude of the rate of inelasticity � serves
as a continuous switch where the plastic deformation evolves continuously with a smooth transition
from elastic to plastic responses. In this regard, a more general form for the scalar function � can
be obtained by replacing ˇde by the two invariants of the unimodular tensor b0

de
and also by adding

the dependency over the two invariants of the unimodular tensor b0.
The scalars ¹P"; ˇdeº are, respectively, defined by

P" D

r
2

3
kdev .d/ k; ˇde D

r
3

2
kdev

�
b0de

�
k; (3)

where k � k D
p
�W � is the norm operator and dev .�/ D � � 1=3 .�W I/ I is the deviator operator.

Furthermore, the scalar valued function ˇ in (2) is a hardening measure, which can be associated
with fluid flow through cells of the tissue for example and is given by an evolution equation of the
following general form

P̌ D b̌ .P"; �; ˇ; ˇde/ : (4)

The unspecified functional forms of b� and b̌may be defined to properly represent a specific tissue
response. Moreover, their unspecified form allows us to derive a general numerical framework for
elastic–viscoplastic models.

Now, a full set of evolution equations is formulated for ¹J; b0; b0
de
; ˇº, and appropriate initial

conditions are needed in order to fully describe the initial-boundary value problem. Assuming that
the material is in the virgin state at the start time t D t0, then the initial conditions are specified by

J .t0/ D 1; b0 .t0/ D I; b0de .t0/ D I; ˇ .t0/ D ˇ0: (5)

It should be noted that if Equations (1c) and (4) are homogeneous of order 1 in time, then the model
will predict a rate-independent elastic–plastic response.

Next, the strain energy function W , which accounts for the stored elastic energy per unde-
formed unit volume, is based on the work by Rubin and Bodner [46] and is therefore proposed as
a function of the total dilatation J D det.F/, with four invariants, two of which are based on the
total deformation tensor ¹ˇ1 D b0W I; ˇ2 D b0Wb0º and the other two on the dissipative component®
˛1 D b0

de
W I; ˛2 D b0

de
Wb0
de

¯
, and the stretch of the I 0th fiber family �I D kmIk; I D 1; : : : ; Nfib.

(where mI D F �MI is a vector characterizing the orientation and the stretch of the I 0th fiber fam-
ily and MI is a unit vector characterizing the reference orientation of the same fiber family). The
general form of the strain energy function is specified by

W D bW .J; ˇ1; ˇ2; ˛1; ˛2; �I / : (6)

Within the context of the purely mechanical theory that states the positiveness of the rate of
material dissipation, D D � Wd � PW =J > 0, the Cauchy stress tensor reads

� D
@W

@J
IC

2

J

@W

@ˇ1
dev

�
b0
�
C
4

J

@W

@ˇ2
dev

�
b02
�

C
2

J

@W

@˛1
dev

�
b0de

�
C
4

J

@W

@˛2
dev

�
b02de

�
C

Nfib.X
ID1

1

J�I

@W

@�I
mI ˝mI :

(7)

It should be noted that a different constitutive formulation for the rate of deformation tensor d would
lead to a different functional form of the Cauchy stress tensor � as was presented by Papes [58].
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2.2. Specific elastic–viscoplastic constitutive equations for soft biological tissues—Rubin and
Bodner model

Rubin and Bodner [46] developed three-dimensional constitutive equations that describe finite
elastic–viscoplastic deformations that produce reasonable agreement with experimental data of
facial tissues. In particular, the specific constitutive equation for the magnitude of the rate of
inelasticity � is given by

� D .�1 C �2 P"/ exp

 
�
1

2

�
ˇ

ˇde

�2n!
; (8)

where ¹�1; �2; nº are material parameters of which �1 controls the rate-dependent inelastic
response, while �2 P" controls the rate-independent inelastic response and n controls the sharpness of
the elastic–plastic transition. The hardening function is specified by the evolution equation

P̌ D
r1r3 C r2 P"

r3 C P"
�ˇde � r4ˇ

r5 ; (9)

where the constants ¹r1; : : : ; r5º are material parameters. Specifically, r1 controls the rate of hard-
ening during relaxation (i.e., P" D 0), r2 controls the rate of hardening during loading (i.e., P" > 0),
and r3 controls the value of strain rate associated with the transition between these two responses.
Note that the first part on the right-hand side of (9) causes ˇ to grow, while the second part is
responsible for material recovery. The parameters ¹r4; r5º control the rate and shape of recovery of
hardening, respectively. Furthermore, it is worth noting that the rate of inelastic deformation yields
a rate-independent response, when the following conditions are fulfilled

�2 P"� �1; r2 P"� r1r3; P"� r3; r4 D 0: (10)

The strain energy function proposed by Rubin and Bodner [46] models tissues as a compos-
ite material composed of an elastic material, elastic fibers, and a dissipative elastic–viscoplastic
material. The specific form of the proposed strain energy function W is given by

W D
�0

2q
.eqg � 1/ ; (11)

where �0 and q are material parameters, and the function g D bg .J; ˇ1; �I ; ˛1/ was decoupled
into four parts such thatbg .J; ˇ1; �I ; ˛1/ Dbg1 .J /Cbg2 .ˇ1/Cbg3 .�I /Cbg4 .˛1/ ;bg1 .J / D 2m1 .J � 1 � ln .J // ; bg2 .ˇ1/ D m2 .ˇ1 � 3/ ;

bg3 .�I / D m3

m4

Nfib.X
ID1

h�I � 1i
2m4 ; bg4 .˛1/ D m5 .˛1 � 3/ ; (12)

where ¹m1; : : : ; m5º are additional material parameters. The individual parts of g include the
functionbg1 .J / accounting for total volume dilatation,bg2 .ˇ1/ accounting for the distortional defor-
mation of the isotropic matrix, bg3 .�I / accounting for the stretch of the I 0th fiber family, andbg4 .˛1/ accounting for the elastic distortional deformation of the dissipative component of the tis-
sue. In (12d ), h�i D .j � j C �/ =2 are the McAuley brackets that eliminate the response of the I 0th
fiber family if under compression. Now using (7), it can be shown that the Cauchy stress tensor is
given by

� D
�

J

"
m1 .J � 1/ ICm2dev

�
b0
�
Cm3

Nfib.X
ID1

h�I � 1i
2m4�1

�I
mI ˝mI Cm5dev

�
b0de

�#
; (13)

where � is the nonlinear shear modulus and is defined by

� D �0e
qg : (14)
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3. STRESS UPDATE AND INTERNAL VARIABLE INTEGRATION SCHEME

Typically, the evolution equations for elastic–viscoplastic response of metals tend to be stiff differ-
ential equations that require special methods of integration to obtain a stable response. Integration
algorithms for evolution equations of the elastic measures of the deformation have been discussed
by Rubin and Attia [52]. More recently, Rubin and Papes [59] developed a strongly objective inte-
gration algorithm for viscoplastic models governed by evolution equations of the elastic measure of
the deformation. In this section, the strongly objective integration algorithm presented by Rubin and
Papes [59] is applied for integrating (1) and (4).

In particular, considering a time increment that begins at time tn and ends at tnC1 with time
interval �t D tnC1 � tn and assuming that the solutions of

®
J.tn/; b0.tn/; b0

de
.tn/; ˇ.tn/

¯
at time

tn are known, the numerical algorithm must provide
®
J.tnC1/; b0.tnC1/; b0

de
.tnC1/; ˇ.tnC1/

¯
at

time tnC1. The strongly objective integration algorithm for the evolution equations of the measures
of deformation

®
J; b0; b0

de
; ˇ
¯

ensures that the values of the tensors
®
b0.tnC1/; b0

de
.tnC1/

¯
at time

increment tnC1 have the same invariance properties under superposed rigid body motion (SRBM) as
the exact tensors

®
b0; b0

de

¯
, when ¹J.tnC1/; ˇ.tnC1/º are unaffected by the SRBM. To this end, use

is made of the work by Rubin and Papes [59] and Simo [60, 61] to develop a relative deformation
gradient. Specifically, the relative deformation gradient Fr , its determinant Jr , and the unimodular
part of the relative deformation gradient F0r are defined by

Fr D
@x .t/
@x .tn/

; PFr D lFr ; Fr .tn/ D I;

Jr D det .Fr/ ; PJr D JrdW I; Jr .tn/ D 1;

F0r D J
�1=3
r Fr ; PF0r D dev .l/F0r ; F0r .tn/ D I:

(15)

Then, the exact solution of (1a; b) and the approximated solution of (1c) are given by

J .tnC1/ D Jr .tnC1/ J .tn/ ;

b0 .tnC1/ D F0r .tnC1/b0 .tn/F0Tr .tnC1/ ;

b0de .tnC1/ D b0�de .tnC1/ ��t� .tnC1/ ad .tnC1/ ;

(16)

where b0�
de
.tnC1/ is the elastic trial solution of the elastic distortional deformation of the dissipative

component and is defined by

b0�de .tnC1/ D F0r .tnC1/b0de .tn/F0Tr .tnC1/ : (17)

Bearing in mind that the deviatoric part of the tensor ad is identical to the deviatoric part of b0
de

(according to (1d )) and using (3b), it can be shown that

dev
�
b0de .tnC1/

�
D

1

1C�t� .tnC1/
dev

�
b0�de.tnC1/

�
;

ˇde .tnC1/ D
ˇ�
de
.tnC1/

1C�t� .tnC1/
; ˇ�de .tnC1/ D

r
3

2
kdev

�
b0�de .tnC1/

�
k:

(18)

In order to evaluate the value of the total rate of distortional deformation at time step tnC1, Papes
[58] defined a strongly objective estimate for the rate of deformation d. In the present paper, we
propose another strongly objective estimate for the rate of deformation d, which is motivated by the
time derivative of the relative deformation tensor Cr D FT

rFr and is defined by

d .tnC1/ D
1

2�t

�
I � b�1r .tnC1/

�
; br .tnC1/ D Fr .tnC1/FT

r .tnC1/ : (19)

Furthermore, the estimation for the hardening variable ˇ at time step tnC1 can be obtained by using
the backward Euler differentiation such that

ˇ .tnC1/ D ˇ .tn/C�tb̌ .P" .tnC1/ ; � .tnC1/ ; ˇ .tnC1/ ; ˇde .tnC1// : (20)
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For general functional forms of
°
� D b� .P"; ˇ; ˇde/ ; P̌ D b̌ .P"; �; ˇ; ˇde/±, it is necessary to

use iterative methods to find the specific values of � and the isotropic hardening variable ˇ at the
time step tnC1. Specifically, the vector of the unknowns z D ¹� .tnC1/ ; ˇ .tnC1/ºT can be obtained
by solving the following set of nonlinear algebraic equations

�1 D �.tnC1/ �b� �P" .tnC1/ ; ˇ .tnC1/ ; ˇde .tnC1/ D ˇ�
de
.tnC1/

1C�t� .tnC1/

�
D 0;

�2 D ˇ .tnC1/�ˇ .tn/��tb̌�P" .tnC1/ ; � .tnC1/ ; ˇ .tnC1/ ; ˇde .tnC1/D ˇ�
de
.tnC1/

1C�t� .tnC1/

�
D 0:

(21)

This system is iteratively solved by using the Newton–Raphson method with the following iterative
scheme:

@�

@z

ˇ̌̌̌
zDzi

�zi C �jzDzi D 0; ziC1 D zi C�zi : (22)

Finally, the spherical part of the elastic distortional deformation associated with the dissipative
component, b0

de
, is obtained from the requirement that b0

de
is a unimodular tensor, which leads to

the following cubic equation�˛1
3

�3
�
1

2

�
dev

�
b0de

�
W dev

�
b0de

�� �˛1
3

�
�
�
1 � det

�
dev

�
b0de

���
D 0: (23)

A discussion on the solution procedure of (23) can be found in [52].

4. SPATIAL TANGENT MODULI

The consistent spatial tangent moduli, which determine the sensitivity of the developed algorithmic
expressions for the stresses in terms of the change of the relative deformation gradient, play a crucial
role in the FE calculation because they serve as iteration operators when the Newton–Raphson
method is applied. Specifically, the spatial tangent moduli read

a .tnC1/ D
1

J .tnC1/

@� .tnC1/

@Fr
FT
r .tnC1/ � � .tnC1/˚ I; (24)

where � .tnC1/ D J .tnC1/ � .tnC1/ is the Kirchhoff stress tensor and the tensor operation ˚ is
defined by .A˚ B/ijkl D AilBjk . According to (7), the Cauchy stress tensor and, therefore, the
Kirchhoff stress tensor are functions of the invariants of the deformation and the deviatoric part of
the unimodular tensors ¹b0; b02; b0

de
; b02

de
º. However, the Cauchy stress tensor for the Rubin and

Bodner model [46] (13) is a function of ¹J; ˇ1; ˛1; dev.b0/; dev.b0
de
/º; therefore, the spatial tan-

gent moduli are developed for the Rubin and Bodner model in this section, while the spatial tangent
moduli are recorded in Appendix B for the generalized model (6). Using (15d ,g) and (16a,b),
it can be shown that the derivatives of the invariants ¹J .tnC1/ D Jr .tnC1/ J .tn/ ; ˇ1 .tnC1/ D
b0 .tnC1/ W I; �I .tnC1/ D kmI .tnC1/ k, mI .tnC1/ D Fr .tnC1/F .tn/ �MI º and the deviatoric part
of the total distortional deformation dev .b0/ with respect to the relative deformation gradient are
given by

@J .tnC1/

@Fr
FT
r .tnC1/ D J .tnC1/ I;

@ˇ1 .tnC1/

@Fr
FT
r .tnC1/ D 2dev

�
b0 .tnC1/

�
;

@�I .tnC1/

@Fr
FT
r .tnC1/ D

1

�I .tnC1/
mI .tnC1/˝mI .tnC1/ ;

@dev .b0 .tnC1//
@Fr

FT
r .tnC1/ D b0 .tnC1/˚ IC I� b0 .tnC1/ �

2

3
b0 .tnC1/˝ I

�
2

3
I˝ b0 .tnC1/C

2

9
ˇ1 .tnC1/ I˝ I;

(25)
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where the special tensor operation � is defined by .A� B/ijkl D AikBjl . Also using (23), the
derivative of the trace of the elastic distortional deformation tensor associated with the dissipative
part ˛1 with respect to the relative deformation gradient is given by

@˛1 .tnC1/

@Fr
FT
r .tnC1/D˛1 .tnC1/ ; ˛1 .tnC1/ D ˛1 .tnC1/ W

@dev
�
b0
de
.tnC1/

�
@Fr

FT
r .tnC1/ ;

˛1.tnC1/D
9

˛21.tnC1/�ˇ
2
de
.tnC1/

�
˛1 .tnC1/

3
dev

�
b0de .tnC1/

�
�cof

�
dev

�
b0de .tnC1/

��	
:

(26)

Next, it can be shown that the derivative of dev.b0
de
.tnC1// with respect to the relative deformation

gradient is given by

@dev
�
b0
de
.tnC1/

�
@Fr

FT
r .tnC1/ D

1

1C�t� .tnC1/

"
@dev

�
b0�
de
.tnC1/

�
@Fr

FT
r .tnC1/

��t dev
�
b0de .tnC1/

�
˝ � .tnC1/

#
;

(27)

where the expression for the derivative of dev.b0�
de
.tnC1// is defined in a similar manner to (25d )

by replacing b0 .tnC1/ with b0�
de
.tnC1/. Now, taking the derivative of the two implicit equations for

¹�; ˇº (21) and using Equations (3a), (18c), and (19a), the tensor � .tnC1/ in (27) reads

� .tnC1/ D
2

3�t P" .tnC1/

d1 .tnC1/

d0 .tnC1/
b�1r .tnC1/ dev .d .tnC1//

C
d2 .tnC1/

d0 .tnC1/

�
3

ˇ�
de
.tnC1/

dev
�
b0�de .tnC1/

�
b0�de .tnC1/ �

2

3
ˇ�de .tnC1/ I

	
;

(28)

where the coefficients ¹d0 .tnC1/ ; d1 .tnC1/ ; d2 .tnC1/º are given in Appendix C. Finally, multi-
plying the stress expression (13) by J , substituting the result into (24), and using (25) and (26), the
spatial tangent moduli read

a .tnC1/ D m1� .tnC1/ I˝ ICm2
� .tnC1/

J .tnC1/

@dev .b0 .tnC1//
@Fr

FT
r .tnC1/

C
� .tnC1/

2J .tnC1/

Nfib.X
ID1

1

�I .tnC1/

d

d�I

�
d g3=d�I

�I .tnC1/

�
mI .tnC1/˝mI .tnC1/

C
� .tnC1/

2J .tnC1/

Nfib.X
ID1

d g3=d�I

�I .tnC1/
.mI .tnC1/˚ IC I�mI .tnC1//

Cm5
� .tnC1/

J .tnC1/

@dev
�
b0
de
.tnC1/

�
@Fr

FT
r .tnC1/

C � .tnC1/˝ g .tnC1/ � � .tnC1/˚ I;

(29)

where mI .tnC1/ is the current structural tensor of the I 0th fiber family defined by

mI .tnC1/ D mI .tnC1/˝mI .tnC1/ ; (30)

and ¹� .tnC1/ ; g .tnC1/º are, respectively, defined by

� .tnC1/ D �0e
q g.tnC1/;

g .tnC1/ D q
@g .tnC1/

@Fr
FT
r .tnC1/ D 2qm1 .J .tnC1/ � 1/C 2qm2dev

�
b0 .tnC1/

�
C 2qm3

Nfib.X
ID1

h�I .tnC1/ � 1i
2m4�1

�I .tnC1/
mI .tnC1/C qm5˛1:

(31)
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5. FINITE ELEMENT FORMULATION

A new mixed FE formulation, particularly suitable for viscoplastic material models involving evo-
lution equations of the measures of deformation, is developed here for the numerical study of soft
tissues. It turned out that the reference configuration of the body in the present development became
irrelevant, and all calculations are carried out on the deformed configurations at time tn and tnC1.
Generally speaking, the mixed formulation for nearly incompressible materials can be derived by
using the Hu–Washizu functional, where the independent variables are the deformation gradient, an
assumed dilatation measure, and an assumed hydrostatic pressure. In particular, the Hu–Washizu
functional can be written as

…
�
QF; J r ; p

�
D

Z
�tn

�
1

J .tn/
W
�
QF
�
C p

�
Jr � J r

�	
d�n �…

ext; (32)

where �n is the element domain at time tn, …ext is the potential energy due to external forces, J r
is a scalar related to the relative volumetric dilatation, p is a scalar related to hydrostatic pressure
(spherical part of stress), and QF is the modified deformation gradient that can be multiplicatively
decomposed into a modified relative deformation gradient and a modified deformation gradient at
time tn such that

QF D QFr QF .tn/ ; QFr D

 
J r

Jr

!1=3
Fr ; QF .tn/ D

 
J .tn/

J .tn/

!1=3
F .tn/ : (33)

The variation of the functional (32) with respect to the different fields yields the following three
equations

ıFr… D

Z
�

QQ� W ıh d� � ı…ext ; QQ� D
J

J
dev . Q� /C pI; ıh D

@ıu
@x
;

ıp… D

Z
�n

�
Jr � J r

�
ıp d�n;

ıJ r… D

Z
�n

 
J .tn/

J .tn/
Qp � p

!
ıJ r d�n; Qp D

1

3
Q� W I;

(34)

where� is the deformed element domain at time tnC1, Q� is evaluated according to (7) (or according
to (13) for the Rubin–Bodner model) where ¹ QFr ; QF .tn/º are used instead of ¹Fr ; F .tn/º, and ıu
is the virtual displacement field. Now, assuming that the variables ¹J r ; pº are constants at the
element domain, the variational equations (34b,c) yield the following explicit equations for the
determination of the fields ¹J r ; pº, respectively,

J r D
1

�n

Z
�n

Jr d�n; p D
1

�n

Z
�n

J .tn/

J .tn/
Qp d�n: (35)

According to (35), the variable J r can be interpreted as the ratio between the element volume at
time tnC1 and tn, while the variable p is the average hydrostatic pressure within the element domain.
Also, the linearization of the variation of the functional (32) is given by

�ı… D

Z
�

"
ıhW

 
QauuW�hC QauJ r

�J r

J r
C I�p

!

C
ıJ r

J r

 
QaJ ruW�hC QaJ r J r

�J r

J r
�
J r

Jr
�p

!

Cıp

 
IW�h �

J r

Jr

�J r

J r

!#
d�;

(36)
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where the tensor �h is defined in a similar manner to ıh in (34c) by replacing the virtual dis-
placement field ıu with the incremental displacement field �u. The fourth-order tensor Qauu, the
second-order tensors

®
QauJ r ; QaJ ru

¯
, and the scalar QaJ r J r are defined by

Qauu D

�
I �

1

3
I˝ I

�
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3
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QQ�
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QQ�
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;
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1

3
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�
QQ�
�
;

QaJ r J r D
1

9
IW
J

J
QaW I �

2

3

J

J
Qp;

(37)

where the fourth-order tensor Qa in (37) is evaluated according to (B.1) in Appendix B for the gener-
alized model or according to (29) for the Rubin Bodner model, where ¹Fr ; F .tn/º are replaced by
¹ QFr ; QF .tn/º.

The ansatz spaces of the different fields have to be balanced in order to obtain a robust and stable
discretization that is based on the Hu–Washizu functional (32). Therefore, a trilinear interpolation
will be applied for the displacement field and a constant interpolation for the assumed dilatation
and pressure terms. Specifically, the deformed configurations at time tn and tnC1 are interpolated,
respectively, as follows

x .tn/ D
NenX
ID1

N IbxI .tn/ ; x .tnC1/ D
NenX
ID1

N IbxI .tnC1/ ; (38)

where N I represents the ansatz functions, Nen is the number of nodes per element, and
¹bxI .tn/ ;bxI .tnC1/º are the nodal positions of the configurations at time tn and tnC1, respectively.
Because the incremental displacements are given by�u D x .tnC1/�x .tn/, a trilinear interpolation
is also used for the incremental displacement field such that

�u D
NenX
ID1

N I�buI ; �buI DbxI .tnC1/ �bxI .tn/ ; (39)

and, therefore, the relative deformation gradient is obtained by

Fr D

 
I �

NenX
ID1

�buI ˝ grad
�
N I

�!�1
; grad

�
N I

�
D
@N I

@x
: (40)

For developing the element residua and element tangent stiffness matrix, the matrix notation is
used. It is worth noting that for the matrix notation, vectors and second-order tensors become vec-
tors (indicated by underline) and fourth-order tensors become second-order matrices (indicated by
double underline). Thus, the tensors ıh and �h can, respectively, be written as follows

ıh D Bıdu; �h D B�du; (41)

where ıdu and �du are the virtual and incremental nodal displacement vectors, respectively, and
B is the standard B-matrix for finite deformation, which consists of the derivatives of the ansatz
functions with respect to the deformed configuration at time tnC1. Now, the residual forces defined
as the difference between the external nodal forces (due to external forces) and the internal nodal
forces (due to the constitutive equations) are obtained by substituting (41) into (33a) such that
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br Dbf ext. �bf int.; bf int. D

Z
�

BT QQ� d�; (42)

and the stiffness matrix is obtained by substituting (41) into (35), using the fact that the assumed
dilatation and pressure fields are constant within the element region and writing these results in a
matrix form as follows

�ı… D

2664
ıdu

ıJ r=J r

ıp

3775
T2664

K
uu

KuJ r
Kup

KJ ru
KJ rJ r �KJ rp

Kpu �KpJ r 0

3775
2664

�du

�J r=J r

�p

3775 ; (43)

where the submatrix K
uu

, the vectors
®
KuJ r

Kup KJ ru
; Kpu

¯
, and the scalars

°
KJ rJ r ; KJ rp,

KpJ r

±
are given by

K
uu
D

Z
�

BT Qa
uu
B d�; KuJ r

D

Z
�

BT QauJ r d�; Kup D KT
pu D

Z
�

BTI d�

KJ ru
D

Z
�

aJ ruB d�; KJ rJ r D

Z
�

aJ rJ r d�; KJ rp D KpJ r D

Z
�

J

J
d�:

(44)

Because the quantities ¹J r ; pº are not assembled over all elements but are determined at the element
level, it is advantageous to perform a static condensation and eliminate the quantities

®
J r ; p

¯
.

Specifically, the tangent stiffness matrix then reads

K D K
uu
C

1

KpJ r
KpuKuJ r

C
1

KJ rp
KJ ru

Kup C
KJ rJ r

KpJ rKJ rp
KpuKup: (45)

The developed mixed FE was implemented into the commercial FE package Abaqus [62]
(Dassault Systèmes, Providence, RI, USA) within the user subroutine UEL. In particular, Abaqus
calls the UEL subroutine with a guess for the nodal displacements of the element, and the UEL
subroutine provides Abaqus with the element residua, RHS, (42) and the element tangent stiffness
matrix, AMATRX, (45) of the governing equations.

6. NUMERICAL VERIFICATIONS

The newly developed mixed FE formulation and its implementation in the commercial FE software
Abaqus [62] are verified by considering a number of standard numerical tests including patch test,
rate of convergence test, and objectivity test. For these simulations, a set of material parameters
determined by Rubin and Bodner [46] is used. In particular, these specific parameters are based on
experimental work by Har-Shai et al. [63], where uniaxial tension tests on strips of excised human
skin were conducted, allowing to determine the stress–strain relationship under cyclic loading at
varying strain rates.

6.1. Patch test

The patch test is considered as a fundamental test in FE technology and has been used for over five
decades as a condition for convergence and as a verification tool for FE algorithms (e.g., Taylor
et al. [64], Babuska and Narasimhan [65], and Zienkiewicz and Taylor [66]). Different variants of
the patch test have been suggested by different research works, and the force version of the patch
test has been applied in this study. To this end, a cube with edge length a D 20:0mm and meshed
by seven distorted elements is considered (Figure 1a). The reference locations XI .I D 1; : : : ; 16/

of the nodes of the seven elements in Figure 1a are specified by
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Figure 1. Patch test for numerical verification of the constitutive equations. (a) Geometric representation of
a cube discretized by seven initially distorted hexahedral elements. (b) Results of the patch test. Comparison
between theoretical and numerical uniaxial nominal stress P11. Fair agreement between experimental data

and the model prediction is observed for the material parameters presented by [46].

X1 D 0; X2 D ae1; X3 D ae2; X4 D ae1 C ae2;

X5 D ae3; X6 D ae1 C ae3; X7 D ae2 C ae3; X8 D ae1 C ae2 C ae3;

X9 D 0:35ae1 C 0:30ae2 C 0:20ae3; X10 D 0:80ae1 C 0:35ae2 C 0:45ae3;

X11 D 0:30ae1 C 0:75ae2 C 0:15ae3; X12 D 0:75ae1 C 0:70ae2 C 0:20ae3;

X13 D 0:20ae1 C 0:25ae2 C 0:65ae3; X14 D 0:75ae1 C 0:30ae2 C 0:70ae3;

X15 D 0:25ae1 C 0:65ae2 C 0:75ae3; X16 D 0:65ae1 C 0:75ae2 C 0:80ae3:

(46)

Also, the cube was subjected to axial stretch in the e1 direction, which causes a uniaxial
stress in the e1 direction. In the present example, three subsequent loading and unloading cycles
of axial stretch with different rates were prescribed similar to the uniaxial tests performed by
Har-Shai et al. [63].

For calculating the theoretical uniaxial stress, the relative deformation gradient Fr that is
evaluated at the end of a typical time step is given by

Fr .tnC1/ D
�1 .tnC1/

�1 .tn/
e1 ˝ e1 C

�2 .tnC1/

�2 .tn/
e2 ˝ e2 C

�3 .tnC1/

�3 .tn/
e3 ˝ e3; (47)

where ¹�i .tn/ ; �i .tnC1/º are the stretches at time steps tn and tnC1, respectively. The lateral
stretches ¹�2 .tnC1/ ; �3 .tnC1/º are determined by iteration to satisfy the boundary condition of
vanishing lateral stress

� W .e2 ˝ e2/ D 0; � W .e3 ˝ e3/ D 0; (48)

while the resulting axial stress is determined by Equation (13).
The numerical uniaxial Piola–Kirchhoff stress obtained by the FE solution and its theoretical

counterpart are plotted in Figure 1b. It can be seen that both solutions coincide, which indicates that
the derived FE formulation satisfies the patch test. Furthermore, a comparison with the experimental
data used to identify the material parameters presented by Rubin and Bodner [46] is shown in
Figure 1b. The generally observed agreement between experimental data and numerical prediction
is a demonstration of the capability of this specific elastic–viscoplastic model to provide a fairly
accurate representation of facial soft tissue response.
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Figure 2. Representation of the cube considered for the convergence test and the nodal position of the eight
mesh nodes. Node #8 is subjected to a nodal force vector f8 D f 8 .e1 C e2 � e3/, with f 8 D 0:05N.

Table I. Convergence rate of element formulation in terms of development of residual force per
iteration for all four increments of �t D 0:25.

Step #1 Step #2 Step #3 Step #4

Iteration #1 0.10000000EC01 0.12733532E�01 0.40889563E�01 0.40196800E�01
Iteration #2 0.87260426E�01 0.20965581E�03 0.17495670E�02 0.26096952E�02
Iteration #3 0.49335789E�03 0.11649721E�06 0.94714269E�05 0.20913626E�04
Iteration #4 0.12882890E�05 0.33258373E�11 0.33819576E�09 0.15121905E�08
Iteration #5 0.69087549E�11 0.31721042E�12

6.2. Rate of convergence

The objective of the rate of convergence test is to verify that the derived spatial tangent moduli
(29) ensure quadratic convergence at each equilibrium iteration. To this end, an initially distorted
element is subjected to a nodal force while the remaining nodes are fixed. Figure 2 provides a
geometric representation of the cube at both the reference (dashed lines) and deformed (solid lines)
configurations, as well as the specific nodal position of the mesh points (with a D 1:0mm). In the
simulation presented here, node #8 is subjected to f8 D f 8 .e1 C e2 � e3/, with f 8 D 0:05N.

The rate of convergence is expressed in terms of the nodal residual force and is calculated based
on a fixed incremental time step of �t D 0:25 s with a total simulation time of t D 1:0 s. The
residual force after each iteration for all four increments is given in Table I, which demonstrates
quadratic convergence through the apparent decay of the order of magnitude of the residual force.

6.3. Objectivity test

The principle of material invariance is a fundamental prerequisite in continuum mechanics and
postulates that the constitutive response remains independent of the observer. Hence, the objective
of this test is to confirm that the presented integration scheme in Section 3 properly integrates the
constitutive evolution equations under SRBM.

Specifically, an element is encapsulated by a network of slide plane elements, allowing us to
superpose a uniaxial stretch and rotation on the cube simultaneously (Figure 3a). Boundary con-
ditions are applied to node #1, at which translational degrees of freedom are fixed and an angular
velocity given by ! D N! .e1 C e2 C e3/ is prescribed. The cube is subjected to six steps of loading
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Figure 3. (a) Finite element (FE) model for the objectivity test. Translational degrees of freedom at node #1
are fixed, while a rotation is prescribed and the translator element is simultaneously stretched, which induces
a uniaxial stress state in the cube. (b) Comparison between numerical results for the fixed and rotated cubes

under cyclic, uniaxial stress.

Table II. Loading profile in terms of time steps, strain rates, and angular
velocities for validating the strong incremental objectivity of the presented

numerical integration.

Step Time interval (s) Strain rate P" .t/ (Hz) Angular velocity Q! (rad/s)

1 15:4 C1:0 � 10�2 3:925972 � 10�2

2 9:1 �1:0 � 10�2 6:643954 � 10�2

3 50:8 C2:5 � 10�3 1:190157 � 10�2

4 39:2 �2:5 � 10�3 1:542346 � 10�2

5 284.0 C5:0 � 10�4 2:128872 � 10�2

6 200.0 �5:0 � 10�4 0:302300 � 10�2

and unloading at different strain rates, similar to the experiments by Har-Shai [63]. Additionally, a
rotation angle of 60ı around the direction of ! is prescribed at each step.

The applied loading profile for the recomputation of the experiments by Har-Shai [63] is sum-
marized in Table II. The angular velocity applied to node #1 is given in terms of Q! D N!=t , with
N! D ˛=

p
3, for arbitrary rotation angle ˛ (e.g., ˛ D 60ı) around ! and step time t .

Figure 3b shows a comparison between the rotated cyclic test and the same example without a
prescribed rotation. It can be seen that both curves coincide, which leads to the conclusion that the
integration scheme is objective.

7. PARAMETER IDENTIFICATION OF FACIAL SKIN TISSUE

In this section, a set of model parameters is derived from mechanical experiments on human facial
skin using the suction method. In comparison with material parameters presented by Rubin and
Bodner [46] and Mazza et al. [16], the measurements considered here describe a more realistic state
of strain within the tissue as for the uniaxial tests by Har-Shai [63] and allow for the identification
of an improved set of model parameters. Moreover, the parameter optimization procedure presented
here can be considered as a challenging example of the implementation’s applicability.

Several different non-invasive testing methods have been used to investigate the mechanical prop-
erties of skin including suction [67–71], indentation [72, 73], and in situ tensioning devices [74–76].
Specifically, suction devices such as the commercially available Cutometer MPA 580 (Courage and
Khazaka Electronic GmbH, Köln, Germany) and the Aspiration device (developed at ETH Zürich

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1238–1262
DOI: 10.1002/cnm



1252 J. WEICKENMEIER AND M. JABAREEN

[9, 23, 41]) have been shown to provide a reliable and repeatable testing method for the characteri-
zation of individual tissue layers. Depending on the probe aperture diameter, different tissue layers
are addressed, which impacts the penetration depth and hence allows us to determine the properties
of individual tissues through solving an inverse FE problem [41]. In the present study, we focus on
the most superficial layer of the face, that is, skin tissue, and therefore, the Cutometer device with
a probe aperture diameter of 2 mm is used. However, in order to determine material model param-
eters valid for deeper tissue layers in the face, such as the superficial muscular aponeurotic system
(SMAS), superficial and deep fat, more experimental data are required that should be obtained using
a suction device with a bigger probe aperture (e.g., the Aspiration device with an 8-mm probe).

In the following, the Cutometer measurements are presented, a set of model parameters for
facial skin is determined, and a sensitivity analysis on the underlying inverse FE model (including
boundary conditions, model dimensions, and material parameters) is shown.

7.1. Cutometer measurements on facial skin

The Cutometer device is based on the suction method, allowing for a quantitative measurement of
tissue response. Inside the Cutometer device, a negative pressure is created, causing skin tissue to
be sucked into the aperture of the probe. The resulting tissue deformation is captured through an
optical system that evaluates the penetration depth for the corresponding loading state. In the series
of measurements presented here, two measurement protocols with different loading profiles were
defined in order to assess different tissue properties. In the first measurement protocol, a negative
pressure is applied at once and held constant for 20 s, thus addressing the following: (i) instanta-
neous tissue response and (ii) the time-dependent creep response. In the second protocol, a linearly
varying negative pressure at a constant pressure rate is prescribed in order to load and unload the
tissue subsequently. This second experiment allows us to determine the impact of the following: (i)
strain-rate-driven hardening; (ii) strain-rate-driven plastification; and (iii) material recovery during
unloading.

For both loading profiles, three different levels of loading were considered. Pressure levels of
300, 400, and 500 mbar were applied in the first measurement protocol and pressure rates of 10,
15, and 20 mbar/s for the second. Each of the six measurements was repeated for at least four times
in order to ensure repeatability. Measurements were performed on a male subject aged 29 years,
and measurement position was chosen based on experiments presented by Barbarino et al. [41] to
be in between the zygomatic and nasolabial regions because these were found to be closest to the
facial average. Figures 4 and 5 show the results of the measurements, where the gray lines represent
the individual measurements and the black lines represent the three averages for each sequence of
measurements at a different pressure level. Specifically, Figure 4 shows the measurement series for

Figure 4. Experimental data from Cutometer measurements for the case of instant loading with four to six
repetitions per pressure level (gray curves) and average curves for each pressure level (black curves).
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Figure 5. Experimental data from Cutometer measurements for the case of linear loading and unloading.
Gray curves represent four to six individual measurements per pressure rate, and black curves are averaged
data over each pressure rate. (a) Apex height over measurement time . (b) Suction pressure over apex height.

the case of instant loading. Figure 5 shows the experimental data for the case of linear loading and
unloading in two different ways, where the apex height history is plotted in Figure 5a and the applied
suction pressure versus the apex height is plotted in Figure 5b. In particular, the latter visualizes the
high non-linearity and inelasticity of skin tissue.

The magnitude of deformation is determined by a number of factors such as moisture content of
skin, region of measurement, pressure applied to the skin upon probe placement, and most signifi-
cantly, inter-subject variability. Nonetheless, as the presented data together with previous Cutometer
and other suction experiments [9, 41] have shown so far, sufficient repeatability is provided, which
is a fundamental prerequisite when using these data for model parameter identification including
multiple measurement curves.

7.2. The finite element model of the inverse problem

The FE model used for this study is based on the work presented by Barbarino et al. [41]. The
model consists of two tissue layers, representing the most superficial layer skin and the SMAS
underneath. The interaction between both layers is modeled such that no relative displacement or
slipping may occur. The respective thicknesses of 1.7 mm for skin and 3.0 mm for SMAS were
determined from ultrasound measurements in the face of the 29-year-old male subject of this study.
Material parameters for SMAS are taken from Mazza et al. [16], while a new set of skin parameters
is determined as presented in Section 7.3.

The FE mesh was optimized for sufficient refinement in regions of larger strains and the contact
zone between skin and probe (Figure 6). Furthermore, the choice of boundary conditions on the
model, initial shear modulus (stiffness) and thickness of SMAS, and contact definition between
probe and skin were tested in order to validate the FE model assumptions. An elaborate analysis of
the model’s sensitivity to changes in these properties is presented in Section 7.4.

Because of the nature of the Cutometer measurement with respect to the size of the probe’s
small aperture diameter and its circular shape, the material’s apparent anisotropy [77] is assumed
to have a marginal impact on the resulting apex height. Therefore and without loss of generality,
skin is considered to be an isotropic material in the FE model presented here. Indeed, the eval-
uation of suction-based experimental characterization of skin is often interpreted on the basis of
assuming an isotropic material response [67, 78–80]. To the contrary, suction experiments with a
large and elliptically shaped probe aperture presented by Iivarinen et al. [68] were used in order to
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Figure 6. Finite element model for the inverse problem of the Cutometer experiment shown in the deformed
state. The bottom nodes are fixed against vertical displacement, while no boundary conditions are imposed

on nodes on the right side of the model. SMAS, superficial muscular aponeurotic system.

potentially capture the anisotropic tissue response and to include this information in the determina-
tion of anisotropic material properties.

7.3. Parameter identification for facial skin

The identification of representative model parameters is an essential component in realistic sim-
ulation of tissue response in surgery planning, implant design, wrinkle formation during facial
expressions, and aging. Based on the experimental campaign and the FE model presented in
Sections 7.1 and 7.2, an inverse problem is set up to determine a set of parameters, which provides
a good agreement between experimental data and the numerical simulation.

Out of the six different averaged measurement curves, three were chosen for the optimization of
parameters and the remaining other three used for verification of the set. The averaged measurement
curves of instant loading at 300 and 500 mbar, as well as the tissue response upon linear loading
and unloading at a pressure rate of 15 mbar/s, were used as input for the objective functions in the
inverse problem. Using the fminsearch procedure in Matlab (Matlab 10.0, The MathWorks, Inc.,
Natick, MA, USA) with the Nelder–Mead simplex algorithm, the difference between the measure-
ment curves and the corresponding numerical simulations was minimized. The parameters that were
included in the optimization were chosen based on their relevance with respect to the two different
types of measurements. The shape of initial loading is mainly determined by �0, q, m2, and �2. �1
and r2 are included in order to allow for adopting the material parameters to fit the linear loading
and unloading experiments at different strain rates. Furthermore, the parameter m5 was chosen to
be 1 � m2. The remaining material parameters are based on the work by Mazza et al. [16] and are
chosen to exhibit a specific model response (Table III). In particular, m1 was set to a sufficiently
large number in order to enforce the incompressibility of the tissue, and m3 was set to zero because
of the isotropy assumption of the skin.

The optimization routine provided a set of material parameters that well represents the experi-
mental data as summarized in Figure 7. In particular, not only is the maximum apex height of the
tissue bubble well predicted in all six cases but the experimentally observed tissue recovery in the
case of linear unloading is also well represented. For the measurement with linearly increasing and
decreasing pressures at a constant pressure rate, the Cutometer reveals limitations in pressure control
for pressures below 25 mbar. During the initial phase of loading and the final phase of unloading, the
pressure rate is insufficiently controlled, leading to exaggerated loading and unloading of the tissue
by the Cutometer, respectively. The data presented in Figure 6 clearly shows this effect through a

Table III. Model parameters from the literature [16].

m1 m3 m4 n r1 r3 r4 r5

1000.0 0.0 1.0 0.5 20.0 10�10 10�4 1.0
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Figure 7. Results of the least square optimization. Comparison between Cutometer measurements and
numerical simulation for the (a) instant loading and (b) the linearly loading and unloading cases.

Table IV. Model parameters from parameter identification for human
facial skin.

�0 (kPa) q m2 �1 �2 r2

0.18 43.0 3:87 � 10�5 1.46 67.45 8.25

pronounced slope at the beginning and end of each measurement. For this reason, experimental and
numerical data in Figure 7b are shown for pressures greater than 25 mbar only. This deficiency of
the Cutometer explains the observed discrepancy between experimental and numerical data in the
initial loading and final unloading phases.

The parameters identified with the presented routine are given in Table IV. The numerical value
of the initial shear modulus �0 D 0:18 kPa is well within values presented in the literature
[41, 67, 81, 82]. Moreover, the small value of m2 D 3:87 � 10�5 can be explained by the pre-
dominant response of the skin as a dissipative elastic tissue as well as the rather short-term tissue
response considered in the two Cutometer measurement protocols. A longer hold period in the
case of instant loading pressure and/or a longer ramping pressure would provide more information
regarding the long-term response of the tissue and influence m2, which mainly controls the purely
elastic distortional response.

7.4. Sensitivity analysis of the finite element model

The FE model presented by Barbarino et al. [41] and used in the present study has been thoroughly
investigated with respect to the assumptions on boundary conditions, material properties of SMAS,
thickness of SMAS, and the interaction between probe and skin tissue. The impact of these assump-
tions at the basis of this FE model was verified using the newly determined material parameters, and
the results are presented in terms of the relative error defined by

errorrel D
max



uref

�
�max



uCi

�
max Œuref�

� 100; (49)

where maxŒuref� is the maximum apex height obtained by the reference model and maxŒuCi � is the
maximum apex height obtained by the different simulations Ci , where i D 1; : : : ; 9 (Figure 8). Both
Cutometer measurement protocols considered in this study are verified here, in order to demonstrate
the FE model’s wide range of applicability.

It can be seen from Figure 8 that the variation of fundamental FE model parameters has only a
marginal impact of at most 5.12% on the overall apex response when considering a variation of the
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Figure 8. Sensitivity analysis on the finite element model used for the parameter identification. Results
shown as relative errors of apex height for the reference simulation and the corresponding simulation with a

varied parameter. SMAS, superficial muscular aponeurotic system.

Figure 9. Sensitivity analysis on the finite element model used for the parameter identification. Apex
displacement for the reference simulation and simulations C1, C2, and C9 upon (a) instant loading and (b)

linear loading and unloading.

parameters in a physical range. The most crucial impact on the overall tissue behavior arises from
the choice of the interaction properties between probe and skin. The relative error between both
extreme cases of frictionless and rough contact is 5.12% for the linearly varying loading profile and
less than 2.85% in the case of instant loading. This rather marginal variation is also reflected in an
only slightly influenced shape of the apex displacement curve as shown in Figure 9 (simulationC9).
As to be expected, a tied contact between probe and skin leads to a reduced apex height as the
inward suction of tissue is restricted.

The presented results also disclose the effect of the boundary conditions on the bottom nodes of
SMAS. The two extreme cases of fixing horizontal and vertical displacements (C1) and removing
any constraint on these nodes (C2) lead to a minor difference in the total apex deformation (C0.26%
and �2.33% for instant loading andC0.27% and �2.74% for linear loading).

The intervariability of the stiffness of SMAS was studied by reducing the initial shear modulus�0
by 10%, 20%, and 50% (C3,C4, and C5). It was found that such a variation has a marginal impact on
the skin tissue response. In particular, a reduction by 50% resulted in an increased maximum apex
height of 1.82% and 1.86% for the two different measurement protocols. It should be noted that in
our study, the material properties of SMAS were adopted from Mazza et al. [16]. However, there is
a need to conduct further experimental measurements to properly define the material properties of
SMAS. This should include suction method-based experiments with a larger probe aperture diameter
in order to ensure the penetration of deeper tissue layers as presented by [9, 23, 41]. The impact
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of the thickness of SMAS on the overall response of skin is found to be less than 0.12% for an
increased tissue thickness of up to 33%.

Figure 9 shows the apex displacement history of both measurement protocols for a selection
of simulations within the sensitivity analysis. The two extreme cases C2 (bottom nodes of SMAS
free) and C9 (tied contact between probe and skin) represent the upper and lower bounds of the
tissue mechanical response in the study presented here. The remaining simulations predict a tissue
response within these two curves.

In conclusion, the FE model is broadly based on physically valid assumptions with respect to the
thickness of both tissues, the choice of boundary conditions on the individual layers, and a realistic
representation of the interaction between probe and skin. Moreover, the presented results strongly
demonstrate that a variation in relevant model parameters has a marginal impact on the predicted
tissue response independent of the type of loading profile considered in the numerical simulation.

8. CONCLUSION

In the face of the significant challenges with respect to the numerical implementation of elastic–
viscoplastic constitutive equations describing the highly nonlinear and time-dependent mechanical
response of soft tissues, a new mixed FE formulation based on the relative deformation gradient is
developed for a generalized framework of constitutive equations of elastic–viscoplastic soft biologi-
cal tissues. In the present paper, the constitutive equations proposed by Rubin and Bodner [46] were
considered as a particular case and are used for the numerical study. The introduction of the relative
deformation gradient leads to a formulation that is based on the last converged and current con-
figurations, instead of the dependence on the reference and current deformed configurations. Such
dependence is particularly suitable for constitutive equations that are formulated in terms of rate of
deformation measures. The developed FE formulation was implemented in the commercial FE pack-
age Abaqus [62], and the implementation was validated through standard numerical tests including
patch test, rate of convergence, and objectivity test. It was found that the formulation passed the
patch test, exhibited quadratic convergence, and showed the integration scheme to be unaffected by
superposed rigid body rotation.

Furthermore, an experimental campaign was conducted, which aims at characterizing the
mechanical tissue response of facial skin by means of the multiaxial loading state resulting from
suction tests. Specifically, two different loading protocols were defined in order to provide suffi-
cient data for the determination of a set of material model parameters. This set was identified by
iteratively solving the inverse FE problem. A comparison between the experimental data and the
numerical simulations demonstrated the model’s capabilities to represent the highly nonlinear tissue
behavior of the skin. This represents a valuable improvement of the model’s applicability over pre-
viously presented material model parameters. Rubin and Bodner [46] and Mazza et al. [16] provide
two different sets of parameters based on the same experimental data on uniaxially tested excised
skin tissue strips, which have both been shown to significantly overestimate the tissue’s stiffness in
physically relevant multiaxial loading conditions.

The present study is conducted in the framework of realistic simulation of facial tissue during
facial expressions, mastication, and aging [41, 55, 83, 84]. To this end, the model implementation
within a numerically robust FE formulation is a significant step in the attempt to represent the physi-
cal tissue response in complex tissue structures. Further steps should include the characterization of
deeper tissue layers by means of the suction method using a larger diameter for the probe opening
in order to determine material model parameters for a more physical loading state in comparison
with uniaxial stress tests. Moreover, the experimental campaign should be extended to investigate
anisotropy of facial skin tissue, as well as the mechanical response to cyclic loading. Consequently,
the inverse FE problem model needs to be adopted to allow for the determination of corresponding
material parameters.

The numerical performance of the new framework for the implementation of elastic–viscoplastic
material models should be further analyzed with respect to convergence behavior, especially for
cases of high-rate and large deformation as in traumatic brain injury or traumatic aortic rupture.
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APPENDIX A

Table A1. Material parameters of the Rubin and Bodner model [46].

�0, � Initial and nonlinear shear modulus
q Parameter influencing the nonlinearity of the strain energy function W
m1 �m5 Parameters of the additive function g in the strain energy function W
r1 � r5 Parameters of the evolution equation of the hardening function ˇ
�1, �2, n Parameters of the rate of inelasticity function �

Table A2. Nomenclature.

X, x Location of a material point in the reference and current configurations
F, l, d Deformation gradient, velocity gradient, and rate of deformation tensor
b, b0 Total deformation tensor and total elastic distortional deformation tensor
b0
de

Elastic distortional deformation associated with the dissipative component
J Total dilatation
ad Direction of the inelastic flow
� Magnitude of the rate of inelasticity
P" Effective total distortional deformation rate
ˇ Hardening measure
ˇde Effective elastic distortion strain associated with the dissipative component
ˇ1, ˇ2 First and second invariants of the total deformation tensor
˛1, ˛2 First and second invariants of b0

de

MI , mI Orientation of the I 0th fiber family in the reference and current configurations
�I Stretch of the I 0th fiber family
W Strain energy function
� , � Cauchy and Kirchhoff stress tensor
Fr Relative deformation gradient
Jr Relative total dilatation
Cr , br Relative right Cauchy–Green deformation tensor and relative deformation tensor
QF Modified deformation gradient
b0�
de

Elastic trial of b0
de

a Spatial tangent moduli
NJr Assumed relative averaged volumetric dilatation
Np Assumed averaged hydrostatic pressure
ıu, �u Virtual and incremental displacement vectors
ıh, �h Virtual and incremental displacement gradients
ıdu, �du Virtual and incremental nodal displacement vectorsbr Residual forces
B Standard B-matrix in finite elements
K Tangent stiffness matrix

APPENDIX B

The spatial tangent moduli for the generalized viscoplastic model are defined by
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APPENDIX C

The coefficients ¹d0 .tnC1/ ; d1 .tnC1/ ; d2 .tnC1/º that are used in (28) are given by
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