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a b s t r a c t 

We take a data-driven approach to deducing the local volume changes accompanying early development of the fetal human brain. Our approach uses fetal brain 
atlas MRI data for the geometric changes in representative cases. Using a nonlinear continuum mechanics model of morphoelastic growth, we invert the deformation 
obtained from MRI registration to arrive at a field for the growth deformation gradient tensor. Our field inversion uses a combination of direct and adjoint methods 
for computing gradients of the objective function while constraining the optimization by the physics of morphoelastic growth. We thus infer a growth deformation 
gradient field that obeys the laws of morphoelastic growth. The errors between the MRI data and the forward displacement solution driven by the inverted growth 
deformation gradient field are found to be smaller than the reference displacement by well over an order of magnitude, and can be driven even lower. The results thus 
reproduce the three-dimensional growth during the early development of the fetal brain with controllable error. Our findings confirm that early growth is dominated 
by in plane cortical expansion rather than thickness increase. 

Statement of Significance: The points of significance of our work are: 

• A data-driven approach to deducing the local volume changes accompanying early development of the fetal human brain from MRI registration. 
• The combination of direct and adjoint methods while constraining the optimization by the physics of morphoelastic growth. 
• Reproduction of the three-dimensional growth during the early development of the fetal brain with controllable error. 
• To our knowledge, the first data-driven confirmation underlying the morphoelastic theory that early growth is dominated by in-plane cortical expansion rather 

than thickness increase. 
• To our knowledge, the first data-driven confirmation underlying the morphoelastic theory that early growth is radially distributed, increasing along the 

ventricular-cortical direction. 
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. Introduction 

Like other organs, the fetal human brain undergoes large changes
n volume and geometry during development in utero . A foundational
nderstanding of these growth-induced changes can be gained from a
orphoelastic treatment. Such an approach underlies the now accepted
odel of morphological development of most biological structures: Mass

ccretes, either due to cell growth and division, or from the deposition of
xtra-cellular matrix elements. Due to the elasticity of the newly grown
accreted) tissue, some energy is stored in it, and the relaxation of this
nergy occurs via an expansion of the tissue. The brain’s grey and white
atter are soft materials with molecular structures that are subjected

o stress-dependent breakage of secondary bonds, and furthermore, are
uid-filled. There is, therefore, a rate-dependence to the mechanical re-
ponse of the brain’s constituent matter. However, on the time scales of
ays to weeks over which the brain undergoes morphological changes,
iscous effects are fully relaxed, and elasticity prevails. Specifically, hy-
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erelastic models governed by the equations of nonlinear elasticity de-
cribe the mechanical changes accompanying growth. 

This is the foundation for the morphoelastic theory of growth, which
elies upon a growth deformation tensor as one component of a mul-
iplicative decomposition of the total deformation gradient tensor. In
eneral, it is incompatible, meaning that it cannot be expressed as the
radient of a smooth vector field. However, the product obtained by
re-multiplying it with the elastic deformation gradient tensor is indeed
ompatible, since it expresses the total deformation gradient. The mor-
hoelastic theory of growth has gained interest over the last two decades
rom the standpoint of neurodevelopmental studies that seek to explain
he folding of the brain. 

Folding, or sulcification and gyrification, of the brain is common
n mammals including primates, cetaceans, pachyderms and ungulates.
olds form in the cortical layer of grey matter, and in species such as
umans that demonstrate pronounced gyrencephaly, the sulci can be
ignificantly deeper than the cortical thickness. A folded cortex confers
 cognitive advantage by increasing the surface area enclosed within
@umich.edu (K. Garikipati). 
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he skull, translating to greater capacity for intelligence. Normally de-
eloped human brains have a gyrification index (ratio of actual surface
rea to the surface area of an enveloping surface) approaching 2.55
49] . Neurodevelopmental pathologies are associated with significant
epartures from this value. In humans, polymicrogyria (shallow, more
requent folding) is associated with developmental delays and epilepsy
5] . Pachygyria (shallow, less frequent and flatter folds) is associated
ith seizures, cognitive impairment and in rare cases, afflictions such
s bipolar disorder [37] . Lissencephaly (abscence of folds) is associated
ith abnormal EEG patterns, intractable epilepsy [26] and cognitive

mpairment [28] . 
Fetal MRI data indicate that the human brain is almost perfectly

mooth until 24 weeks of gestation [17,18,23] , from which stage gyrifi-
ation proceeds until well after birth. Therefore, there is a clear neuro-
hysiological motivation to understand the physics governing cortical
olding and the conditions for normal or pathological cortical folding.
ncompatible morphoelastic growth in the cortical layer results in cir-
umferential compression and causes an elastic buckling bifurcation. It
s then followed by extreme strains leading to highly folded structures
n the post-bifurcation regime. While a theory of axonal tension had
een advanced to explain cortical folding under forces imposed by in-
erconnected neurons [41] , subsequent studies of cutting followed by
lastic relaxation on ferret brains established that axonal tension does
ot cause folding, while computational studies strongly suggested that
ncompatible growth does [47] . Bayly et al. [6] explained gyrification
atterns by analytic and computational studies based on incompatible
orphoelastic growth and Tallinen et al. [39] used experiments in a

urrogate, polymeric gel model combined with nonlinear finite element
omputations to further support the morphoelastic theory of growth. 1 

Wrinkling of surfaces, such as seen on the cortex, and of interfaces,
s a common phenomenon. In some cases it is influenced by mismatched
lastic moduli between a thin elastic layer and an underlying substrate, a
etting common to biological and non-biological thin films [25] . Among
he former, it also may control the patterns of wrinkling of fruit and
egetable skins [48] . However, the essence of the phenomenon of brain
olding does not depend on stiffness contrasts [13,33,40] ; the Young’s
odulus of cortical grey matter and of the white matter underlying it

re of the same order of magnitude [9,46] . Therefore, the elastic matter
f the folding brain may be reasonably taken as homogeneous. 

A number of recent studies have sought to explain aspects of brain
olding by incompatible growth under linearized and, more appropri-
tely, nonlinear morphoelasticity [6–9,11,21,24,38,39,42] . While draw-
ng upon insight from linearized buckling of beams, plates and shells
10,21,24] , most of the computational work is based on finite strains
n the post-bifurcation regime on analytic ellipsoidal shapes. This body
f work has shed light on the mechanical conditions governing the de-
elopment of the organ-wide pathologies of polymicrogyria, pachygyria
nd lissencephaly [8,11,21] . 

It is notable that the early-forming primary sulci and gyri in hu-
ans and other gyrencephalic species show a remarkable robustness of
lacement in normally developed brains [44] . This is emphasized in fe-
al brain atlases with data on the geometry of developing brains, such
s those obtained from 67 individuals by Gholipour et al. [18] . After
niform scaling to normalize volumes, an “average ” brain defined by
omputing the mean geometry showed well-resolved primary folds. This
uggests that, when scaled for volume, the placement of those folds is
onsistent across individuals. Absent this persistence, the folds would
ave been smeared out in the averaged geometry. A second observa-
ion is that despite the organ scale lateral symmetry of the brain the
ulci and gyri do not localize into symmetric modes of folding at all
cales [23,31] as seen in computational studies on high-symmetry ref-
rence shapes. These observations serve as motivations to identify the
1 Albeit, solved as elastic unloading from the folded configuration with first- 
rder dynamics added to numerically stabilize the system against bifurcations. 
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p
f  

2 
equence of kinematic and mechanical steps that lead to precise place-
ent of the primary folds as well as the range of variation in secondary

nd tertiary folds. Recent work studied the mechanisms of cell growth
nd migration and linked them to the developing pattern of the early
olds [36,42] . Here, we note that migration, which is largely complete
y around week 26 [44] , is responsible for the placement of cells in six
ayers of the cortex, with later generations occupying outer positions. In
urn, this positioning has an influence on subsequent growth and fold-
ng. 

Here, we take a broader view, seeking to deduce the local volume
hanges that develop throughout the brain and drive its expansion as
ell as folding by incompatible, morphoelastic growth. Our approach is
 data-driven one. Using magnetic resonance imaging (MRI) data on the
eometric changes of the fetal brain, recorded weekly, we seek to solve
 series of inverse problems to arrive at the spatially varying growth de-
ormation gradient tensor of the morphoelastic theory. The methods we
se begin with MRI segmentation and computational mesh generation
o enable image registration across successive weeks of brain develop-
ent. These steps, themselves involving inverse modelling, provide us
ith the geometric data for the final stage of physics-constrained infer-

nce. Here, we combine direct and adjoint methods for computing gradi-
nts of objective functions in a generalized optimization setting, subject
o the constraint imposed by the physics of morphoelastic growth. This
ill leave us with mechanics-constrained geometric data in the form
f the precisely defined growth deformation tensor that describes the
hree-dimensional development of the fetal brain. From this basis, fur-
her physically well-founded inference will be possible on the dynamics
f fetal brain development. In related work, Garcia et al. [14] used data
rom fetal MRI studies over weeks 27-37 of development, and anatom-
cal multimodal surface matching to deduce spatiotemporal variations
n surface growth. The minimization of the elastic strain energy is used
n their image registration approach. 

The morphoelastic growth model is discussed in Section 2 , the in-
erse problem for the growth deformation tensor and tests with syn-
hetic data appear in Section 3 . MRI segmentation of fetal brain atlas
ata and computational mesh generation with it appear in Section 4 .
he MRI registration problem is discussed in Section 5 , and the extrac-
ion of morphoelastic growth deformation data in Section 6 . Results for
he inferred growth deformation gradient tensor are in Section 7 , and
onclusions in Section 8 

. The theory of morphoelastic growth 

The theory of morphoelastic growth is well-established and traces
ts roots to multiplicative plasticity, and even before that to multiplica-
ive theormoelasticity. For a discussion of the kinematics we direct the
eader to Ref [15] ., to Refs [16,30] for its coupling with mass trans-
ort, and to Ref [2] . for a perspective of growth and remodelling. A
omplete treatment that includes the mathematical background and a
roper placement of the theory within nonlinear elasticity can be found
n Ref [20] . The treatment that follows here is rigorous, but eschews
ormalism in favor of accessibility of the important ideas. 

Given the displacement field 𝒖 ∈ ℝ 

3 , and the reference position of
aterial points 𝑿 ∈ ℝ 

3 , the deformation gradient tensor is 𝑭 = 𝟏 +
 𝒖 ∕ 𝜕 𝑿 , where 𝟏 is the isotropic tensor. The multiplicative decompo-
ition of 𝑭 that underlies the theory splits it into elastic and growth
omponents, 𝑭 e and 𝑭 g , respectively, so that 𝑭 = 𝑭 e 𝑭 g . Incompatibil-
ty is admitted by this decomposition in that 𝑭 g , which we think of as
riving morphoelastic growth, is not, in general, obtained as a gradient
eld in the manner that 𝑭 arises from 𝒖 . It therefore does not satisfy the
lassical kinematic compatibility conditions that 𝑭 does. 

As explained in the Introduction, we work within the theory of hy-
erelasticity. We adopt a neoHookean strain energy density function 𝜓
rom [42] , which depends exclusively on the elastic right Cauchy-Green
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Fig. 1. Classical morphoelastic growth pre- 
sumes that the entire path of growth and mor- 
phogenesis can be described kinematically with 
the initial state of the brain as the reference 
configuration. In the case of fetal brain devel- 
opment and the emergence of new material, we 
posit that this assumption proves problematic 
and propose a theory of evolving reference con- 
figurations. Specifically, we split the growth 
path into multiple individual steps defined by 
their own reference configuration Ω𝜏 , kinemat- 
ics and strain energy density functions defined 
on them. 
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∫  
ensor 𝑪 

e = 𝑭 e 
T 
𝑭 e , 

( 𝑪 

𝑒 ) = 

1 
4 
𝜆
(
det 𝑪 

e − 1 
)
− 

1 
2 

( 1 
2 
𝜆 + 𝜇

)
log det 𝑪 

e + 

1 
2 
𝜇( tr 𝑪 

e − 3) , (1)

here 𝜇 and 𝜆 are the standard Lamé parameters. The first Piola-
irchhoff stress tensor 𝑷 follows as the derivative of the strain energy
: 

 = 

𝜕𝜓 

𝜕 𝑭 𝑒 
= 𝜇𝑭 𝑒 + 

1 
2 
𝜆𝐽 𝑐 𝑭 𝑒 − 𝑇 − 

(1 
2 
𝜆 + 𝜇

)
𝑭 𝑒 − 𝑇 , (2)

here 𝐽 c = det 𝑭 𝑒 . The first Piola-Kirchhoff stress is governed by the
uasistatic balance of linear momentum with no body force: 

 ⋅ 𝑷 = 𝟎 in Ω, 𝒖 = �̄� on 𝜕Ω𝑢 , 𝑷 𝑵 = ̄𝒕 on 𝜕Ω𝑃 , (3) 

here Ω ⊂ ℝ 

3 denotes the domain, which is the brain, and its Dirichlet
nd Neumann boundaries are Ω𝑢 and Ω𝑃 , satisfying Ω𝑢 ∪ Ω𝑃 = 𝜕Ω and

𝑢 ∩ Ω𝑃 = ∅. In this study, 𝑡 = 𝟎 and deformation will be driven by 𝑭 g .
s alluded to above, this theory will be cast in the framework of an

nverse problem by seeking to match the resulting displacement field
ith observed data. 

.1. A theory of evolving reference configurations 

The theory of morphoelastic growth has traditionally been applied to
 fixed reference configuration, relative to which the tensors 𝑭 and 𝑭 g 

ave been defined. For finite growth and morphogenesis, which charac-
erise fetal brain development, however, this theory proves inadequate.
ts premise is that the entire path of growth and morphogenesis can
e described kinematically with the initial state of the brain as the ref-
rence configuration. This assumption proves problematic when taken
o the logical conclusion that the reference configuration is therefore
he singularity when the first brain cell appears. The total growth at all
imes 𝑡 is 𝑭 g ( 𝑡 ) relative to this fixed reference configuration with initial
ondition 𝑭 g (0) = 𝟏 . This hypothesis leads to unphysically large elastic
nd growth distortions for later times 𝑡 ≫ 0 . In numerical implementa-
ion of the theory, solvers fail to converge for these large distortions.
urthermore, this theory does not account for mass appearing at some
ime, say 𝜏 > 0 , thereby introducing material points where none existed
efore and defining the reference state from which the newly formed
aterial deforms. Finally, it does not address the evolution of local ma-

erial properties, in this case represented by the strain energy density
unction. In the traditional approach to morphoelastic growth the strain
nergy density is defined with respect to the reference configuration. If
he latter is fixed, it restricts the changes of the strain energy density
unction as growth and morphogenesis proceed. 

To circumvent these difficulties, we define a continuously evolving
eference configuration, Ω𝜏 , which coincides with the deformed config-
ration resulting from all morphoelastic processes from times 𝑡 ≤ 𝜏 (see
ig. 1 ). 

In this setting, the kinematics of finite strain multiplicative mor-
hoelasticity is elaborated upon by time parameterization yielding
3 
 𝜏 , 𝑭 𝜏 , 𝑭 
g 
𝜏 , 𝑭 

e 
𝜏 all corresponding to the reference configuration Ω𝜏 . They

atisfy the kinematic relations: 

 𝜏 = 𝟏 + 

𝜕 𝒖 𝜏
𝜕 𝑿 𝜏

, (4) 

 𝜏 = 𝑭 e 𝜏𝑭 
g 
𝜏 , (5) 

 

e 
𝜏 = 𝑭 e 𝜏

T 
𝑭 e 𝜏 . (6) 

he strain energy density function is defined at points 𝑿 𝜏 ∈ Ω𝜏 and writ-
en as 

 𝜏 ( 𝑪 

e 
𝜏 ) = 

1 
4 
𝜆
(
det 𝑪 

e 
𝜏 − 1 

)
− 

1 
2 

(1 
2 
𝜆 + 𝜇

)
log det 𝑪 

e 
𝜏 + 

1 
2 
𝜇( tr 𝑪 

e 
𝜏 − 3) . (7)

inally, the stress and governing partial differential equation are: 

 𝜏 = 

𝜕𝜓 𝜏

𝜕 𝑭 e 𝜏
= 𝜇𝑭 e 𝜏 + 

1 
2 
𝜆𝐽 𝑐 𝑭 e 

− T 
𝜏 − 

(1 
2 
𝜆 + 𝜇

)
𝑭 e 

− T 
𝜏 , (8)

 𝜏 ⋅ 𝑷 𝜏 = 𝟎 in Ω𝜏 , 𝒖 𝜏 = �̄� 𝜏 on 𝜕Ω𝜏𝑢 , 𝑷 𝜏𝑵 𝜏 = ̄𝒕 𝜏 on 𝜕Ω𝜏𝑃 . (9) 

The strain energy density, 𝜓 𝜏 , while written here in time-
ndependent functional form, could also evolve in general. This reflects
he understanding that the strain energy density, like the free energy,
s defined relative to some reference. Here, as Fig. 1 suggests, it is re-
efined at each reference state, Ω𝜏 . In practice, a discrete time parame-
erization is adopted at instants 𝜏 ∈ { 𝑡 0 , 𝑡 1 , …} . This is natural for data
cquisition and computations. 

. An inverse problem posed on the geometry of the developing 

rain 

In §4 –6 we describe the steps by which we arrive at geometric field
ata, ̂𝒖 that represents displacements during growth of the developing
rain. With these data, we seek to solve an inverse problem for the
rowth tensor field 𝑭 g 𝜏 and displacement field 𝒖 𝜏 such that the error
 𝜏 − 𝒖 𝜏 is minimized under the constraint of the physics expressed in
qs. (4–9 ). The data field �̂� 𝜏 will be interpolated from pointwise dis-
lacement vectors 𝒅 𝜏1 , …𝒅 𝜏𝑁 at 𝑁 instants 𝑿 𝜏1 

, …𝑿 𝜏𝑁 
. Similarly, we

ill use the finite-dimensional version 𝑭 g 
ℎ 

𝜏 of the unknown growth ten-
or and the corresponding displacement field, 𝒖 ℎ 𝜏 . Our approach is to
se the finite-dimensional weak form of the governing Eq. (9) , which is

xpressed as follows in terms of 𝒖 ℎ 𝜏 and 𝑭 g 
ℎ 

𝜏 : 
For some 𝒖 ℎ 𝜏 ∈ 𝒮 ℎ ⊂ 𝒮 , where 𝒮 ℎ = { 𝒖 ℎ 𝜏 ∈ ℋ 

1 (Ω) | 𝒖 ℎ 𝜏 = 𝒖 𝜏 on 𝜕Ω𝑢 } ,
nd ∀ 𝒘 

ℎ ∈ 𝒱 

ℎ ⊂𝒱 , where 𝒱 

ℎ = { 𝒘 

ℎ ∈ ℋ 

1 (Ω) | 𝒘 

ℎ = 0 on 𝜕Ω𝑢 } , the
nite-dimensional (Galerkin) weak form of the problem is satisfied: 

Ω

∇ 𝒘 

ℎ ∶ 𝑷 𝜏 ( 𝒖 ℎ 𝜏 , 𝑭 
g ℎ 
𝜏 ) d 𝑉 − ∫

𝜕Ω𝑃 

𝒘 

ℎ ⋅ 𝒕 d 𝑆 = 0 . (10)
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In a forward solution of the weak form, a constitutive model would

e written for 𝑭 g 
ℎ 

𝜏 . This approach, with some variations, has been
ollowed almost universally in the literature up to this point [6–

,11,21,24,38,39,42] . The determination of 𝑭 g 
ℎ 

𝜏 by solution of an in-
erse problem is a significant departure in the current work. By seeking
o invert a tensor field it also stands in contrast to classical inverse prob-
ems in mathematical physics that infer a small number of scalar param-
ters. We decompose Ω𝜏 into element sub-domains Ω𝜏e , for 𝑒 = 1 , … 𝑛 el .

he variations 𝒘 

ℎ , trial displacement solutions 𝒖 ℎ and growth tensor 𝑭 g 
ℎ 

𝜏

re defined by using a finite number of basis functions in each element,

 

ℎ 
𝑒 = 

𝑛 ∑
𝑎 =1 

𝒄 𝑎 𝑁 𝑎 , 𝒖 ℎ 𝜏𝑒 
= 

𝑛 ∑
𝑎 =1 

𝒅 𝜏𝑎 𝑁 𝑎 , 𝑭 
g ℎ 
𝜏𝑒 

= 

𝑚 ∑
𝑎 =1 

𝝌𝜏𝑎 𝑀 𝑎 (11)

here 𝒄 𝑎 , 𝒅 𝜏𝑎 ∈ ℝ 

3 , 𝝌𝜏𝑎 ∈ ℝ 

3×3 , 𝑛 is the dimensionality of the function

paces 𝒮 ℎ and 𝒱 

ℎ , 𝑚 is the dimensionality of the expansion for 𝑭 g 
ℎ 

𝜏 and
 𝑎 , 𝑀 𝑎 represent basis functions. We assume the growth tensor to be
iagonal and anisotropic, and interpolate it using nodal basis functions,
hus reducing its dimensionality also to 𝑛 . Its diagonal terms are written
s: 

iag 
(
𝑭 

g ℎ 
𝜏𝑒 

)
= 

𝑛 ∑
𝑎 =1 

𝝌𝜏𝑎 𝑀 𝑎 (12) 

here ̃𝝌𝜏𝑎 ∈ ℝ 

3 . This form was motivated by the total deformation gra-
ient tensor, which when extracted from MRI data on normative, de-
eloping fetal brains in Gholipour et al.’s atlas [18] by the methods
n Sections 4 –6 , was found to be similarly diagonally dominant and
nisotropic. We made this assumption throughout the following of this
ommunication, and dispensed with the tildes on 𝝌𝑎 . 

We define the residual vector arising from finite element assembly
f the weak form: 

 𝜏 ( 𝒅 𝜏 , 𝝌𝜏 ) = 𝑨 

𝑒 

⎛ ⎜ ⎜ ⎜ ⎝ ∫Ω𝑒 
𝑛 ∑
𝑎 =1 

∇ 𝑁 𝑎 ⋅ ¶( 𝒖 ℎ 𝜏 ( 𝒅 𝜏 ) , 𝑭 
g ℎ 
𝜏 ( 𝝌𝜏 ))d 𝑉 − ∫

𝜕ΩP e 

𝑁 𝑎 𝒕 d 𝑆 
⎞ ⎟ ⎟ ⎟ ⎠ 

(13) 

here 𝑨 𝑒 denotes the assembly operator over the elements, and the ar-
itrariness of the degrees of freedom corresponding to the variations
as been used, as is the practice in the variational setting. Recall that
he dimensionality of the vector 𝑹 𝜏 is the total number of unknown dis-
lacement degrees of freedom. The discretized, Galerkin weak form of
he problem is then 𝑹 𝜏 ( 𝒅 𝜏 , 𝝌𝜏 ) = 𝟎 . In the current setting, it represents
he physics that constrains the inverse problem, for whose solution we
dopt two approaches. 

.1. Inverse solution for 𝐹 
g 
𝜏 by gradient descent on a loss function 

In this approach we directly define the field data �̂� as a finite-
imensional function: 

 𝜏𝑒 
= 

𝑛 ∑
𝑎 =1 

𝒅 𝜏𝑎 𝑁 𝑎 (14)

nd use it instead of 𝒖 ℎ 𝜏 in the weak form (10) and residual Eq. (13) to

rrive at 𝑹 𝜏 ( ̂𝒅 𝜏 , 𝝌𝜏 ) . The loss function is 

 gd ( 𝑹 𝜏 ) = |𝑹 𝜏 | (15)

efined via the Euclidean norm. We use gradient descent algorithms,
nd their variants, to find 

𝜏 = arg min 
𝝌

𝓁 gd ( 𝑹 𝜏 ( ̂𝒅 𝜏 , ̃𝝌)) . (16)

Note that the form of the loss, 𝓁 gd = |𝑹 𝜏 |, means that the exact sat-

sfaction of the constraint 𝑹 ( ̂𝒅 , 𝝌) = 𝟎 is the optimal solution to (16) . As
n many high-dimensional, nonlinear optimization problems, this solu-
ion is not attainable, in general. Instead, we seek to arrive at 𝓁 gd < 𝜀 for
ome tolerance 𝜀 using either the classical gradient descent algorithm or

ne of its variants. The field 𝑭 g 
ℎ 

is then recovered by Eq. (12) . 
𝜏

4 
.2. Solution of the inverse problem by adjoint-based gradient optimization 

With ̂𝒖 𝜏 written as in Eq. (14) we solve the following minimization
roblem, beginning with the loss redefined as the 𝐿 2 -norm of the error 

 𝐿 2 = ‖�̂� 𝜏 ( ̂𝒅 𝜏 ) − 𝒖 ℎ 𝜏 ( 𝒅 𝜏 ( ̃𝝌𝜏 )) ‖2 , 
𝝌𝜏 = arg min 

𝝌𝜏

𝓁 𝐿 2 , such that 𝑹 𝜏 ( 𝒅 𝜏 , 𝝌𝜏 ) = 𝟎 . (17) 

he minimization is solved classically, by computing gradients of the
oss 𝓁 𝐿 2 . Importantly, the PDE constraint 𝑹 𝜏 ( 𝒅 𝜏 , 𝝌𝜏 ) = 𝟎 makes 𝒅 𝜏 an
mplicit function of 𝝌 . This makes the functional derivatives 𝛿𝓁 𝐿 2 ∕ 𝛿𝒅 𝜏
hallenging to compute. The obvious approach is to solve the PDE con-
traint repeatedly for a range of values of 𝝌𝜏 and construct the implicit
erivative by numerical differentiation. In addition to the expense of
 large number of PDE forward solves for a single derivative evalua-
ion, numerical differentiation is noisy and ultimately introduces insta-
ilities. The well-established alternative is to employ the adjoint of the
acobian of the PDE constraint with respect to 𝒅 𝜏 to compute 𝛿𝓁 𝐿 2 ∕ 𝛿𝒅 𝜏 .
he Jacobian arises in the complete first-order Taylor expansion of the
DE constraint equation, and allows the computation of 𝛿𝓁 𝐿 2 ∕ 𝛿𝒅 𝜏 with
 single adjoint solution per step. We have adopted this approach to
DE constrained optimization here, and refer to it as adjoint-based gra-

ient optimization . In this work we use the L-BFGS-B optimization algo-
ithm from SciPy [43] with the aid of the dolfin-adjoint [29] package for
djoint-based gradient optimization. 

.3. Algorithm testing with synthetic data 

The gradient descent and adjoint-based gradient optimization ap-
roaches were first tested against synthetic data for nonuniform but
ontinuous growth tensor fields. These fields were obtained by solving a
hree-dimensional, steady state diffusion problem for a scalar field 𝑐 and
efining 𝑭 g to be a function of this argument. The steady state diffusion
roblem is: 

 

2 𝑐 = 0 in Ω, (18) 

 = 1 on Γv , (19) 

 = 1 . 2 on Γc , (20) 

here Ω was taken as the normative fetal brain geometry at week 21
rom the atlas of Gholipour et al. [18] , Γv is the interface between
he ventricles and sub-cortex and Γc is the outer surface of the cortex.
he growth deformation gradient tensor is chosen to be diagonal, but
nisotropic, and of the form: 

̂
 

g 
= 𝟏 + 0 . 15( 𝑐 − 1) 𝒆 1 ⊗ 𝒆 1 + 0 . 05( 𝑐 − 1) 𝒆 2 ⊗ 𝒆 2 + 0 . 1( 𝑐 − 1) 𝒆 3 ⊗ 𝒆 3 . (21)

he field of det ̂𝑭 
g 

is shown in Fig. 2 . The forward problem of morphoe-
astic growth, described in Eqs. (4) –(13) was then solved by the finite
lement method for time 𝜏 = 0 on a mesh with 27,306 tetrahedral ele-
ents using the FEniCS open source code [1] . The neoHookean strain

nergy density function (1) was used in the nearly incompressible limit
ith 𝜆 = 82200 Pa and 𝜇 = 1677 Pa [42] , corresponding to a Poisson ra-

io 𝜈 = 0 . 49 in the infinitesimal strain regime. We denote the resulting
ynthetic displacement field by 𝒖 s . To model the noise present in the dis-
lacement fields extracted from the fetal brain atlas, varying amounts
f Gaussian noise were applied to the synthetic data. For displacement
elds with applied noise fraction 𝑝, nodal displacements were offset by
𝒖 ∼  (0 , 𝑝 𝒖 𝑐 ) , where 𝑝 ∈ {0 , 0 . 01 , 0 . 02} . We did not include spatiotem-
oral variations of material properties. The results presented here do
ot change significantly for variations of the bulk and shear modulus
ithin an order of magnitude. However, as is well understood, forward
nd inverse solution steps converge more slowly as the incompressible
imit is approached (studies not shown). 
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Fig. 2. We generated synthetic displacement fields on the fetal brain mesh at 
21 weeks in order to test the accuracy of our two optimization algorithms. We 
show the solution of the inverse problem in the form of the inferred det 𝑭 𝑔 fields 
using the gradient descent and the adjoint-based optimization approach. Top 
rows show the three dimensional view and the bottom rows shows the coronal 
view for three levels of superposed noise 𝑝 . 
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2 https://github.com/mechanoChem 
.3.1. Inverse solution by gradient descent on synthetic data 

The problem as posed in Sections 3.1 and 3.2 admits a multitude of
easible solutions, and optimal solutions, if they are obtained also could
e non-unique. This situation is typical of inverse problems. The opti-
ization algorithms navigate a high-dimensional landscape of feasible

olutions seeking the optimal one. Furthermore, stiffness is induced by
he nonlinearity of the PDE constraint in the form of the residual (13) .
his combination can lead to slow convergence or even divergence. Aim-

ng to mollify this problem, we linearly subdivide the synthetic data 𝒖 s 
nto some number of steps, in this case ten. The gradient descent ap-
roach at step 𝑖 uses ̂𝒖 𝑖 = 

𝑖 

10 𝒖 𝑐 . The initial guess for the nodal values of
 

g at step 𝑖 ≠ 0 , i.e., the nodal tensor unknowns 𝝌 𝑖 , was the inferred 𝑭 𝑔 

rom the previous step such that 𝝌 𝑖 0 = 𝝌 𝑖 −1 final 
. The initial guess for 𝝌 at

tep 1 was chosen to be the diagonalized deformation gradient tensor
onstructed from the displacement 1 

10 𝒖 𝑐 , i.e. the target displacement at
tep 1. Specifically, we project diagonal components of the deformation
radient tensor to the nodes by solving an 𝐿 2 projection problem: 

Ω

𝚵1 0 ∶ 
(
𝝌1 0 − diag ( 𝑭 ) 

)
d 𝑉 = 0 , (22) 

ith 𝚵1 0 being the variations on 𝝌1 0 . We define the volume averaged 𝐿 2 

rror for the final inferred 𝑭 𝑔 at the tenth step as: 

𝑒 ( 𝑭 𝑔 ) ‖2 ∶= 

⎛ ⎜ ⎜ ⎝ 
1 
𝑉 ∫

Ω

|𝑭 𝑔 10 − ̂𝑭 
𝑔 |2 F d 𝑉 ⎞ ⎟ ⎟ ⎠ 

1∕2 

, (23)

here | ∙ |F denotes the Frobenius norm and ̂𝑭 
g 

is the field from Eq. (21) .
ith the inferred 𝑭 𝑔 10 , we then evaluate the displacement by solving the

orward elasticity problem, and evaluate its volume averaged 𝐿 2 -error
y 

𝑒 ( 𝒖 ) ‖2 ∶= 

⎛ ⎜ ⎜ ⎝ 
1 
𝑉 ∫

Ω

|𝒖 − ̂𝒖 |2 d 𝑉 ⎞ ⎟ ⎟ ⎠ 
1∕2 

. (24)

radient descent updates were driven by the Adam optimizer with de-
ault parameters [27] . For steps 1–9, 10,000 epochs were used with
earning rate decay in epoch 𝑘 given by 𝜂𝑘 = 

𝜂𝑘 −1 
1+(5×10 −8 ) 𝑘 and 𝜂0 = 10 −4 .

o ensure convergence on the final step, 100,000 epochs were used with
earning rate decay given by 𝜂𝑘 = 

𝜂𝑘 −1 
1+(2×10 −9 ) 𝑘 and 𝜂0 = 10 −3 . 
5 
Fig. 2 shows det ̂𝑭 
g 

inferred by gradient descent from synthetic data
t different level of noise. Also shown in Table 1 , gradient descent
ith the Adam optimizer allows inference of an 𝑭 g field with volume-
veraged 𝐿 2 -error that is three orders of magnitude lower (fifth col-
mn) than the 𝐿 ∞-norm of the applied 𝑭 g for synthetic data genera-
ion, and even with noise fraction 𝑝 = . 02 remains an order of magnitude
ower. However, the inferred 𝑭 g field appears less smooth when ob-
ained from the noisy data. We also have included the volume-averaged
 

2 -error in the forward displacement (fourth column) computed by ap-
lying the gradient descent-inferred 𝑭 g field. For synthetic data without
oise, the volume-averaged 𝐿 2 -error is three orders of magnitude lower
han the 𝐿 ∞-norm of �̂� and one order of magnitude lower for noise
ith 𝑝 = . 02 . Gradient descent calculations were carried out with the
echanoChem code, 2 a general-purpose library for finite element and

sogeometric solution of coupled problems in biophysics and materials
hysics. mechanoChem draws from the deal.ii library [3,4] . 

.3.2. Inverse solution by adjoint-based gradient optimization 

As discussed in §3.2 adjoint-based gradient optimization involves the
orward solution of the PDE constraint 𝑹 ( 𝒅 , 𝝌) = 𝟎 at each step of the
lgorithm–see Eq. (17) . As also expressed there, this forward solution
s driven by the inferred nodal growth tensor field 𝝌 at each iteration.
his forward problem is numerically stiff due to the nonlinearity, near-

ncompressibility and complex geometry of the brain. While the adjoint
olution step to determine gradients typically poses no difficulty, diver-
ence of the forward solution will cause the termination of the overall
lgorithm. Therefore, we now linearly subdivide the inferred 𝝌 into 100
teps in driving the forward solution. The initial guess for 𝝌 was again
hosen to be the diagonalized deformation gradient tensor constructed
rom 𝒖 s . 

Fig. 2 and Table 1 also include the results obtained by adjoint-based
radient optimization. Using noise-free data, the volume-averaged 𝐿 2 -
rror in the inferred 𝑭 𝑔 is higher than that obtained by the gradient
escent approach, but the volume-averaged 𝐿 2 -error in the forward dis-
lacement solution obtained as an inherent part of the adjoint-based
radient optimization approach is about one order of magnitude lower
han the corresponding error obtained by gradient descent. The superi-
rity of the adjoint-based approach is more apparent in the presence of
oise, improving to an order of magnitude lower volume-averaged 𝐿 2 -
rror for 𝒖 and 𝑭 g over the gradient descent approach for 𝑝 = . 02 . Addi-
ionally, the inferred 𝑭 g field is smoother than that obtained by gradient
escent. The adjoint-based approach is, in general, more computation-
lly expensive since it needs one evaluation of the adjoint solution per
tep. Nevertheless, given these performance metrics, we choose to ex-
lusively use the adjoint-based gradient optimization approach with the
eal MRI data from the fetal brain atlas, because of the inevitability of
oise therein. Adjoint-based gradient optimization was carried out using
he L-BFGS-B optimization algorithm from the SciPy package [43] and
he dolfin-adjoint software library [29] . 

We emphasize that the above numerical implementations of the in-
erse problem was made possible by the theory of evolving reference
onfigurations. The traditional approach of a single reference configu-
ation with 𝑭 ( 𝑡 ) = 𝑭 e ( 𝑡 ) 𝑭 g ( 𝑡 ) does not converge for times beyond week
3. 

. MRI segmentation and FE model generation 

We obtained data on brain geometries from a spatiotemporal mag-
etic resonance imaging (MRI) atlas of the fetal brain developed for
he study of early brain growth [19] . Based on MRIs of 81 normal fe-
uses scanned between gestational weeks 19 and 39, Gholipour et al.
reated a four-dimensional atlas of brain development during the sec-
nd half of gestation and covering weeks 21 through 37 [18] . Six to

https://github.com/mechanoChem
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Table 1 

Results of the inverse problem for synthetic data. The superscripts “gd ” and “adj ” denote 
the solution obtained via using gradient descent with the Adam optimizer and adjoint-based 
optimization, respectively. 

Noise, 𝑝 ‖�̂� ‖∞ ‖𝑭 𝑔 ‖∞ ‖𝑒 ( 𝒖 ) ‖gd 
2 ‖𝑒 ( 𝑭 𝑔 ) ‖gd 

2 ‖𝑒 ( 𝒖 ) ‖adj 
2 ‖𝑒 ( 𝑭 𝑔 ) ‖adj 

2 

0.00 5 . 212 × 10 −1 1.767 6 . 697 × 10 −4 1 . 640 × 10 −3 6 . 415 × 10 −5 5 . 148 × 10 −3 

0.01 5 . 196 × 10 −1 1.767 9 . 978 × 10 −3 7 . 352 × 10 −2 5 . 476 × 10 −4 1 . 053 × 10 −2 

0.02 5 . 284 × 10 −1 1.767 1 . 753 × 10 −2 1 . 183 × 10 −1 1 . 104 × 10 −3 2 . 001 × 10 −2 

Table 2 

Mesh properties of our five finite element models for gestational weeks 21 through 25. Proportional to the 
increase in mesh size, total brain volume increases by 130% during this time period. #e = number of elements; 
#n = number of nodes. 

model week 21 week 22 week 23 week 24 week 25 

#e #n #e #n #e #n #e #n #e #n 

cortex 25747 8262 29363 9439 29873 9623 34618 11188 97945 14957 

subcortex 35749 8712 41996 9995 46852 10894 55066 12911 65217 15576 

ventricles 7353 2106 7026 2068 6275 1881 7454 2157 9127 2638 

total 68849 14262 78385 16204 83000 17095 97138 19982 172289 25197 
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Fig. 3. Brain anatomy, MR image segmentation, and finite element model gen- 
eration. (a) The brain consists of frontal lobe, temporal lobe, parietal lobe, occip- 
ital lobe, and the cerebellum. The cerebrum can be separated into cortical gray 
matter and subcortical white matter layers, as well as the fluid filled lateral ven- 
tricles. We use (b) structural MRIs from gestational weeks 21 through 25 and 
create 3D reconstructions based on a semi-automatic segmentation process (c). 
In (b) We delineate the cortex, subcortex and ventricles based on their grayscale 
thresholding and manual correction. (d-e) show coronal and axial slices of the 
segmentation, respectively. The fully (f) three-dimensional reconstructions are 
converted into (g) volumetric finite element models that consist of tetrahedral 
elements. 
ight scans were used for the reconstruction of each week’s atlas. The
utomatic atlas generation includes repeated motion correction, super-
esolution volume reconstruction, brain mask segmentation, rigid align-
ent to the atlas space and intensity homogenization [19] . The result-

ng atlas clearly illustrates the temporally and spatially heterogeneous
rowth during early in utero brain development, including numerous in-
tances of folding and creasing. In a first step, the present work focuses
n weeks 21 through 25 during which the first major elastic bifurca-
ion occurs, and from which the central sulcus (CS) emerges [22] . For
ach gestational week, we created a finite element model of the brain
rom the respective MR images using the ScanIP software environ-
ent of Simpleware (Synopsys, Mountain View CA), see Fig. 3 . In a

emi-automatic segmentation procedure, we delineated the cortex, sub-
ortex and lateral ventricles based on grayscale contrast and created a
hree-dimensional reconstruction of these structures [45] . The software
onverted these segmentations into a volumetric model consisting of
etrahedral elements. We prescribed a minimum and maximum element
dge length of 2.0mm and 2.5mm, respectively, and obtained meshes
ith a total number of 68,849 elements for the model of week 21, 78,385

lements for week 22, 83,000 elements for week 23, 97,138 elements
or week 24 and 172,289 elements for week 25. The number of elements
nd nodes of each subregion are summarized in Table 2 . Based on our
egmentations, we observe that the total brain volume, i.e. cortex and
ubcortex, increases by 130% and ventricular volume increases by 17%
etween weeks 21 and 25. Specifically, cortical volume changes from
7155 mm 

3 at week 21, to 20651 mm 

3 at week 22, 20468 mm 

3 at week
3, 26099 mm 

3 at week 24 and 35232 mm 

3 at week 25; subcortical
olume increases from 23,834 mm 

3 at week 21, to 29159 mm 

3 at week
2, 33056 mm 

3 at week 23, 41360 mm 

3 at week 24 and 58646 mm 

3 at
eek 25; and ventricular volume changes from 5079 mm 

3 at week 21,
o 5176 mm 

3 at week 22, 4011 mm 

3 at week 23, 4527 mm 

3 at week
4 and 5946 mm 

3 at week 25. The rostral-caudal brain length increases
y 29.5% between weeks 21 (59.86 mm) and 25 (77.54 mm); the width
f the brain increases by 26.4% between weeks 21 (49.31 mm) and 25
62.33 mm); and the height of the brain increases by 33.8% between
eeks 21 (39.19 mm) and 25 (52.44 mm). 

. MRI registration framework 

The continuous morphological changes of the fetal brain during
n utero development are inherently contained in the fetal brain at-
as described previously. To determine the incremental brain deforma-
ions driven by growth between consecutive gestational weeks, we use
 previously developed registration method that determines the non-
6 
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Table 3 

Convergence properties of the registration framework. We achieve a mean similarity ratio 
of 81.95% after registering two consecutive weeks. Local spline refinement increased the 
number of active DOFs on average by a factor of 5.3. 

week 21 to 22 week 22 to 23 week 23 to 24 week 24 to 25 

max active DOF 179293 184738 211560 260623 

# iterations 22 22 24 57 

similarity ratio (RS) [%] 84.87 69.86 86.06 87.00 
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igid spatial transformation between two MR images by maximizing the
ongruence of image intensities. Specifically, we built on the work of
awar et al. [32] who optimized their algorithm for large deformations
nd topological changes between medical images. The source image
 1 ( 𝑓 ( 𝒙 , 𝑡 )) and the target image 𝐼 2 ( 𝒙 ) are both embedded in hierarchi-
al truncated B-spline objects with the spatial transformation function
( 𝒙 , 𝑡 ) given by [32] 

( 𝒙 , 𝑡 ) = 

𝑁 𝑏 ∑
𝑚 =1 

𝑷 𝑚 ( 𝑡 ) 𝜙𝑚 ( 𝒙 ) , (25)

here P 𝑚 ( 𝑡 ) are the control points associated with the trivariate basis
unctions 𝜙𝑚 ( 𝒙 ) , and 𝑁 𝑏 represents the total number of basis functions.
s part of the registration process, the transformation function 𝑓 ( 𝒙 , 𝑡 )

s incrementally varied until dissimilarities between source and target
mage are minimal. To that end, we followed the proposed energy func-
ional 𝐸( 𝑓 ( 𝒙 , 𝑡 )) proposed by Pawar et al. which accounts for intensity
ifferences and penalizes non-smoothness of the deformation field [32] .
he minimization of the energy functional is achieved by posing it as an
 

2 gradient flow, thus simplifying the optimization problem to a partial
ifferential equation. The energy functional takes the following form
32] 

( 𝑓 ( 𝒙 , 𝑡 )) = ∫Ω 𝑔( 𝒙 , 𝑡 ) 
(
𝐼 2 ( 𝒙 ) − 𝐼 1 ( 𝑓 ( 𝒙 , 𝑡 )) 

)2 dΩ
+ 𝜆1 ∫Ω

(‖‖𝑓 ,𝑢 ( 𝒙 , 𝑡 ) ‖‖2 2 + 

‖‖𝑓 ,𝑣 ( 𝒙 , 𝑡 ) ‖‖2 2 + 

‖‖𝑓 ,𝑤 ( 𝒙 , 𝑡 ) ‖‖2 2 )dΩ
+ 𝜆2 ∫Ω

(‖‖𝑓 ,𝑢 ( 𝒙 , 𝑡 ) ‖‖2 2 ‖‖𝑓 ,𝑣 ( 𝒙 , 𝑡 ) ‖‖2 2 − 

(⟨𝑓 ,𝑢 ( 𝒙 , 𝑡 ) , 𝑓 ,𝑣 ( 𝒙 , 𝑡 ) ⟩)2 )
+ 

(‖‖𝑓 ,𝑣 ( 𝒙 , 𝑡 ) ‖‖2 2 ‖‖𝑓 ,𝑤 ( 𝒙 , 𝑡 ) ‖‖2 2 − 

(⟨𝑓 ,𝑣 ( 𝒙 , 𝑡 ) , 𝑓 ,𝑤 ( 𝒙 , 𝑡 ) ⟩)2 )
+ 

(‖‖𝑓 ,𝑢 ( 𝒙 , 𝑡 ) ‖‖2 2 ‖‖𝑓 ,𝑤 ( 𝒙 , 𝑡 ) ‖‖2 2 − 

(⟨𝑓 ,𝑢 ( 𝒙 , 𝑡 ) , 𝑓 ,𝑤 ( 𝒙 , 𝑡 ) ⟩)2 )dΩ, (26) 

here the first term measures the sum of squared differences of the in-
ensity between the iteratively updated source and target images, ⟨𝑢, 𝑣 ⟩
s the dot product and 𝜆1 and 𝜆2 are regularization parameters that pe-
alize non-smoothness and inconsistent area change of each face of the
D control grid elements during deformation. The terms 𝑓 ,𝑢 ( 𝒙 , 𝑡 ) , 𝑓 ,𝑣 ( 𝒙 , 𝑡 )
nd 𝑓 ,𝑤 ( 𝒙 , 𝑡 ) are the first derivatives of 𝑓 ( 𝒙 , 𝑡 ) with respect to coordinates
 𝑢, 𝑣, 𝑤 }, and 𝑔( 𝒙 , 𝑡 ) is given by 

( 𝒙 , 𝑡 ) = 

1 √ 

𝛾 + 

(
𝜕𝐼 1 ( 𝑓 ( 𝒙 ,𝑡 )) 

𝜕𝑢 

)2 
+ 

(
𝜕𝐼 1 ( 𝑓 ( 𝒙 ,𝑡 )) 

𝜕𝑣 

)2 
+ 

(
𝜕𝐼 1 ( 𝑓 ( 𝒙 ,𝑡 )) 
𝜕𝑤 

)2 
, (27)

here 𝛾 is a small number to prevent division by zero. The gradient flow
orm for minimization of 𝐸 is: 

d 𝑷 𝑚 ( 𝑡 ) 
d 𝑡 

= − 𝛿𝐸 𝑚 ( 𝑓 ( 𝒙 , 𝑡 )) . (28)

ontrol points are updated using the Forward Euler method and by in-
roducing a pseudo timestep 𝜖. The control points 𝑃 𝑚 ( 𝑡 ) are iteratively
omputed for time point 𝑠 + 1 based on the solution of the previous
imestep 𝑠 as follows 

 

𝑠 +1 = 𝑷 𝑠 − 𝜖 𝛿𝐸 𝑠 ( 𝑓 ( 𝒙 , 𝑡 )) . (29)

𝐸 𝑠 ( 𝑓 ( 𝒙 , 𝑡 )) is the derivative of the energy functional with respect to
arametric domain 𝒙 , see Ref [32] . for a detailed derivation. The opti-
ization loop ends when the change in intensity difference falls below a
7 
iven tolerance. We direct the reader to Ref [32] . for a detailed deriva-
ion of the registration framework. Also of interest is Ref [14] . where
he authors used minimization of the elastic strain energy in their image
egistration of morphogenetic changes in fetal brains. In the work pre-
ented here, we embed our images in an initial three-dimensional grid
f size 32 × 32 × 32 control points, set maximum number of refinement
teps to 3, regularization parameters 𝜆1 and 𝜆2 to 0.0001 and 0.0001,
espectively, and chose a timestep size of 1 ×10 −5 . 

We used the registration framework to determine the four deforma-
ion fields between weeks 21 and 22, weeks 22 and 23, weeks 23 and
4 and weeks 24 and 25. For each pair, we selected the first week as the
ource image and the second week as the target image. It took 22 itera-
ions for the first two steps of 21–22 and 22–23 weeks, 24 iterations for
3–24 weeks and 57 iterations for 24–25 weeks to obtain the optimal
ransformation map with an average similarity ratio of 81.95%. This in-
rease in iterations reflects the evolving morphological complexity of
he progressive developmental steps. Local spline refinement increased
he number of active degrees of freedom on average by a factor of 5.3;
dditional convergence properties are summarized in Table 3 . 

. Growth-induced full-field brain deformations 

Following the registration step, we extracted the displacement vector
f each control point in our grid. In Fig. 4 we show the undeformed and
eformed grids on a coronal and axial slice for all four registration steps.
he effect of the regularization terms is clearly reflected in the smooth-
ess of the deformation field throughout the brain. Simultaneously, the
eek-wise registration steps allow identification of the major folding

vent, i.e. the formation of the central sulcus, at week 24. Increased grid
ensity leads to a higher spatial resolution of the three-dimensional de-
ormation field and improves the detection of local growth phenomena.

Fig. 5 shows registration results for changes between weeks 24 and
5 in three representative slices, the coronal, axial and sagittal views, re-
pectively. The magnified images reveal the grid deformation and iden-
ify local growth patterns that produce highly heterogeneous deforma-
ion fields. Two challenges are encountered in the steps of MR image
egistration and computation of growth-induced deformation: 

ewly formed brain regions limit the registration framework : 
The registration framework faces significant challenges when new

ubstructures emerge between two distinct scans. In general, the regis-
ration framework assumes that all material points are preserved and
imply undergo a potentially large deformation. During fetal brain de-
elopment, novel brain structures emerge between discrete weekly at-
ases. The generation of new material points leads to non-uniformities
nd incompatibilities in the displacement field which we have not yet
ddressed in the present work. Effectively, registration is not being per-
ormed on the same brain in two different configurations, but on two
rains with different structures. Since our registration framework min-
mizes pixel intensity differences, the appearance of novel structures,
an lead to divergence of our registration step and produce a severely
istorted displacement field. Therefore, our approach provides reliable
isplacement data in the case of morphogenetic growth which manifests
n the form of pure volumetric expansion. In this case, material points
reserve their intensity value in MR images and simply displace. When
ew material emerges and influences the intensity distribution, the reg-
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Fig. 4. The registration framework iteratively 
updates the positions of control points that be- 
long to the spline object embedded in each 
week’s MRI data. Here, we plot the undeformed 
and deformed grids in representative coronal 
and axial slices for the registrations between 
weeks 21 and 22, weeks 22 and 23, weeks 23 
and 24 and weeks 24 and 25. From the MRI 
images we observe the overall volume increase 
of the brain during the 5 week period. The two 
grids per image show the increasingly hetero- 
geneous displacement field with rather uniform 

morphogenetic growth between weeks 21 and 
23 and more localized displacement patterns in 
individual lobes between weeks 23 and 25. 

Fig. 5. Coronal, axial and sagittal views of the 
registration results for week 24 to 25. We no- 
tice increasingly heterogeneous displacement 
patterns due to localized growth in distinct sub- 
regions of the brain. The registration frame- 
work delivers highly smooth displacements of 
the control points- to the extent that some local 
phenomena might be eliminated due to over- 
regularization of the spline object. As a con- 
sequence of this smoothing, the emergence of 
new substructure between two scans will lead 
to artificial grid distortions. Overall, the reg- 
istration delivers a reliable displacement field 
representative of the temporally and spatially 
varying growth patterns [12] . 

i  

w  

s

H

 

d  

t  

t  

d  

t  

v  

c  

c  

p  

f  

w  

i  

g  

t  

o  

s  

b  

r  

s  

c  

t  

t  

m  

2  

b  

2  

b  

0  

w  

d  

d  

m
 

r  

u  
stration framework is observed to artificially distort the grid. Therefore,
e are limited to one-week intervals over which the emergence of new

ubstructures is minimal. 

eterogeneous Growth Field : 
In order to prepare data for the inverse problem, we use the nodal

isplacement vectors in our FE meshes for weeks 21 through 24 to de-
ermine the reference configurations. Specifically, we use trilinear in-
erpolation in the registration data to obtain the full-field displacement
ata for every node in each mesh based on the registration results from
hat particular week. Fig. 6 shows the respective results as displacement
ectors that are color-coded by magnitude. Earlier weeks (21 to 23) are
haracterized by rather homogeneous small displacements across the
ortex. Later weeks (23 to 25) exhibit increasingly heterogeneous dis-
lacements which is characteristic for localization of growth due to the
ormation of the central sulcus, and the subsequent formation of folds
ithin each lobe. The rapid proliferation and migration of neurons dur-

ng this period of development [12] leads to an acceleration of brain
rowth. Neuronal migration is largely complete by week 26 [44] , but
heir placement has an influence on subsequent growth and folding. The
bserved growth patterns are also indicative that brain development is
t  

8 
ignificantly more complex than purely uniform, morphological growth
ut must adhere to genetically encoded cell migration patterns that
esult in the highly reproducible brain topology observed within any
pecies. The top row of Fig. 6 shows the displacement field of the outer
ortical surface; the bottom row shows the displacement field of the ven-
ricular surface. We measured a maximum displacement of 5.79 mm in
he temporal lobe between weeks 24 and 25. We observe mean displace-
ents of the outer cortical surface of 0.45 ± 0.27 mm between weeks
1 and 22, 0.88 ± 0.42 mm between weeks 22 and 23, 1.91 ± 0.74 mm
etween weeks 23 and 24 and 3.03 ± 1.06 mm between weeks 24 and
5. Mean displacements of the ventricular surface are 0.19 ± 0.13 mm
etween weeks 21 and 22, 0.28 ± 0.19 mm between weeks 22 and 23,
.8 ± 0.51 mm between weeks 23 and 24 and 1.49 ± 0.7 mm between
eeks 24 and 25. Overall, we find that growth is highly symmetric
uring this early stage of brain development and posit that individual
ifferences between hemispheres are the result of averaging data from
ultiple brains when the atlas was constructed [19] . 

In earlier work, Rajagopalan and co-workers had performed image
egistration on fetal brains over weeks 20–28 to report the scalar vol-
me changes [34] as well as the “principal growth direction ” [35] and
he spatiotemporal variation of these quantities. The same information
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Table 4 

Results summary. The values of standard deviation 𝜎 cor- 
respond to Gaussian filtering of the registration data. 
“N/A ” denotes no filters applied. From the triangle in- 
equality, the total volume-averaged 𝐿 2 -error in the for- 
ward displacement field from the inference relative to 
the MRI displacement data is bounded from above by 
4 . 3 × 10 −2 for either value of 𝜎. 

week 𝜎 mm ‖�̂� ‖∞ mm ‖𝑒 ( 𝒖 ) ‖2 mm 

21–22 N/A 1 . 820 × 10 0 1 . 523 × 10 −2 

0.5 1 . 593 × 10 0 1 . 177 × 10 −2 

22–23 N/A 1 . 425 × 10 0 1 . 453 × 10 −2 

0.5 1 . 307 × 10 0 1 . 162 × 10 −2 

23-23.5 N/A 1 . 451 × 10 0 2 . 098 × 10 −2 

0.5 1 . 283 × 10 0 1 . 773 × 10 −2 

23.5–24 N/A 1 . 451 × 10 0 2 . 154 × 10 −2 

0.5 1 . 283 × 10 0 1 . 770 × 10 −2 

24-24.125 N/A 6 . 279 × 10 −1 6 . 739 × 10 −3 

0.5 5 . 454 × 10 −1 5 . 373 × 10 −3 

24.125-24.25 N/A 6 . 279 × 10 −1 6 . 818 × 10 −3 

0.5 5 . 454 × 10 −1 5 . 429 × 10 −3 

24.25-24.375 N/A 6 . 279 × 10 −1 6 . 635 × 10 −3 

0.5 5 . 454 × 10 −1 5 . 502 × 10 −3 

24.375-24.5 N/A 6 . 279 × 10 −1 6 . 776 × 10 −3 

0.5 5 . 454 × 10 −1 5 . 336 × 10 −3 

24.5–24.625 N/A 6 . 279 × 10 −1 6 . 914 × 10 −3 

0.5 5 . 454 × 10 −1 5 . 331 × 10 −3 

24.625-24.75 N/A 6 . 279 × 10 −1 6 . 488 × 10 −3 

0.5 5 . 454 × 10 −1 5 . 349 × 10 −3 

24.75-24.875 N/A 6 . 279 × 10 −1 6 . 396 × 10 −3 

0.5 5 . 454 × 10 −1 5 . 162 × 10 −3 

24.875-25 N/A 6 . 279 × 10 −1 6 . 298 × 10 −3 

0.5 5 . 454 × 10 −1 5 . 078 × 10 −3 
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ould have been extracted from the results presented in Figs. 4–6 . In-
tead, we seek to further account for the constraint of the physics of
orphoelastic growth. As we show in Section 7 , this further delineates

he inelastic growth deformation tensor, 𝑭 g and separates it from the
lastic part of the deformation gradient tensor, 𝑭 e . This consideration
f the laws of morphoelastic growth differentiates the current work from
hat of Rajagopalan and co-workers [34,35] . 

.1. Gaussian filtering 

While filtering techniques typically are applied to raw MRI data to
enerate the images in Fig. 3 a, noise is reintroduced by the registration
lgorithm. The displacement field reported in Figs. 5 –6 is therefore in
eed of smoothing before its use in the numerical techniques of inverse
odelling, since the forward and inverse problems require computation

f deformation gradients. Further Gaussian filtering helps improve con-
ergence of the corresponding numerical solvers (as shown in Table 4 ).
e applied Gaussian filtering to the post-registration displacement field,

oting however, that the standard discrete Gaussian filter cannot be ap-
lied in a straightforward manner to unstructured meshes that must be
sed for the irregular geometry of the brain. Consider the continuous
aussian filter over the infinite domain: 

 ( 𝒙 0 ) = ∫ℝ 3 𝐺( 𝒙 0 , 𝒙 ) 𝒖 reg ( 𝒙 ) d 𝑉 

= ∫Ω 𝐺( 𝒙 0 , 𝒙 ) 𝒖 reg ( 𝒙 ) d 𝑉 , 

here 𝐺( 𝒙 0 , 𝒙 ) = 

1 (√
2 𝜋𝜎2 

)3 𝑒 − 
‖𝒙 ‖2 
2 𝜎2 is the three-dimensional Gaussian dis-

ribution, 𝜎 is the standard deviation and 𝒖 reg is the displacement field
fter registration. Since ∫Ω 𝐺 d 𝑉 < 1 we scale the filtered displacement
t each node to obtain: 

 ( 𝒙 0 ) = 

∫ℝ 3 𝐺( 𝒙 0 , 𝒙 ) d 𝑉 
∫ 𝐺( 𝒙 0 , 𝒙 ) d 𝑉 ∫Ω 𝐺( 𝒙 0 , 𝒙 ) 𝒖 reg ( 𝒙 ) d 𝑉 

Ω

9 
= 

1 
∫Ω 𝐺( 𝒙 0 , 𝒙 ) d 𝑉 ∫Ω

𝐺( 𝒙 0 , 𝒙 ) 𝒖 reg ( 𝒙 ) d 𝑉 . (30) 

. Inference of the fetal brain’s growth deformation tensor 

The displacement field data for weeks 𝜏 to 𝜏 + 1 obtained after regis-
ration and filtering, as detailed in Sections 4 –6 , is ̂𝒖 𝜏 . The corresponding
odal values on various meshes are ̂𝒅 𝜏 . As explained at the end of Section
.3.2 , we used adjoint-based gradient optimization guided by the lower
olume-averaged 𝐿 2 -errors obtained relative to optimization by gradi-
nt descent. The following subsections discuss the meshes used, further
nterpolation of data between 𝒅 𝜏 and 𝒅 𝜏+1 to aid convergence, initial-
zation of 𝝌 (nodal values of 𝑭 g ) and numerical performance. Results
re presented as tables and figures for the volume-averaged 𝐿 2 -errors,
q. (24) , with ̂𝒖 = ̂𝒖 𝜏 and figures for the inferred fields of 𝑭 g . 

.1. Meshes 

The MRI data at weeks 21 and 23 yield the corresponding refer-
nce configurations, Ω21 and Ω23 , on which tetrahedral meshes were
onstructed with 27,306 and 32,385 elements, respectively. Reference
onfigurations Ω22 and Ω24 were then generated by deforming Ω21 and

23 , respectively, using the displacement fields ̂𝒖 21 and ̂𝒖 23 obtained by
RI registration for week 21–22 and week 23–24. These displacement
elds applied to the meshes on Ω21 and Ω23 also yield the meshes on

22 and Ω24 . All these meshes appear in Fig. 7 . 

.2. Data interpolation to aid convergence 

The displacement field data, ̂𝒖 23 , between weeks 23 and 24, results
n large distortions that appear in the deformation gradient, 𝑭 23 . Since
his field also drives, and confers these distortions on, the iterates of
he inferred 𝑭 g 23 , it makes the forward solution for 𝒖 23 numerically stiff
nd prone to divergence in the adjoint-based gradient optimization. We
herefore carried out a linear interpolation and redefined the displace-
ent on Ω23 to be ̃𝒖 23 = 

1 
2 �̂� 23 to an interpolated reference configuration

23 . 5 . In a continuation of this interpolation, we also defined ̃𝒖 23 . 5 = 

1 
2 �̂� 23 

n Ω23 . 5 to Ω24 . In a further magnification of this large morphoelas-
ic growth, ̂𝒖 24 between weeks 24 and 25 leads to even greater distor-
ions and more severe divergence of the forward solution for 𝒖 24 during
djoint-based gradient optimization. We therefore defined eight inter-
ediate displacement fields ̃𝒖 24 , ̃𝒖 24 . 125 , … �̃� 24 . 875 = 

1 
8 �̂� 24 and the corre-

ponding interpolated reference configurations Ω24 . 125 , …Ω24 . 875 . These
nterpolated geometries fit with the concept of evolving reference con-
gurations discussed in Section 2.1 . Given these interpolated displace-
ent fields, we aimed to infer the growth deformation tensor, 𝑭 g 𝜏 , be-

ween reference configurations Ω𝜏 and Ω𝜏+Δ𝜏 defined as above. 
The initial guess at each configuration 𝑭 g 𝜏0 was chosen to be diagonal

nd assembled from the corresponding components of the deformation
radient tensor ̂𝑭 𝜏 = 𝟏 + 𝜕 ̂𝒖 𝜏∕ 𝜕 𝑿 𝜏 or ̃𝑭 𝜏 = 𝟏 + 𝜕 ̃𝒖 𝜏∕ 𝜕 𝑿 𝜏 (if displacement
nterpolation to intermediate reference configurations was used). The
odal values, 𝝌𝜏0 were then obtained by solving the 𝐿 2 -projection: 

Ω

𝚵 ∶ 
(
𝝌𝜏0 − diag 

[
𝑭 𝜏

])
d 𝑉 = 0 if ̃𝒖 𝜏 has not been defined , 

Ω

𝚵 ∶ 
(
𝝌𝜏0 − diag 

[
𝑭 𝜏

])
d 𝑉 = 0 if ̃𝒖 𝜏 has been defined , (31) 

ith 𝚵 being the variations on 𝝌𝜏0 . 

.3. Convergence 

Our approach to the inverse problem involves iterations on the ad-
oint equation to update 𝝌𝜏 , which is then interpolated for 𝑭 g 𝜏 . Each
olution of the adjoint equation is followed by a forward solution for 𝒖 𝜏 .
n order to mollify numerical stiffness and ease the direct solver’s path
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Fig. 6. Full-field displacement data between 
week 21 and 22, week 22 and 23, week 23 
and 24 and week 24 and 25. We observe 
a homogeneous displacement field between 
weeks 21 and 23 and increasingly heteroge- 
neous displacement patterns between week 23 
and 25. Specifically, we notice that the emer- 
gence of the central sulcus leads to localization 
of growth patterns that are attributed to the on- 
set of secondary buckling in individual lobes 
and increased folding of the cortical surface. 
A maximum displacement of 1.24 mm was ob- 
served from week 21 to 22, 2.29 mm was ob- 

served from week 22 to 23, 3.65 mm was observed from week 23 to 24 and 5.79 mm from week 24 to 25. 

Fig. 7. We generated tetrahedral meshes based on the seg- 
mentation at each gestational week 21 through 24 in support 
of our proposed theory of evolving reference configurations. 
At 24 weeks, the central sulcus begins to emerge and the tem- 
poral lobe expands noticeably. 
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Fig. 8. Convergence plot for week 21 to week 22 with and without Gaussian 
filtering. With the convergence criteria used, we notice that it would require 
at minimum 1000 more iterations to obtain an additional order of magnitude 
decrease in the loss. 
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o convergence, we linearly subdivided 𝝌𝜏 into 100 steps in driving the
orward solution. The convergence threshold was set to requiring that
he loss (see Eq. 17 ) be smaller than 2 × 10 −2 of ‖�̂� 𝜏‖∞, and that the
elative change in loss between successive adjoint solution steps falls
elow 10 −3 . This threshold typically required 2000 adjoint iterations to
chieve and cost about 900 CPU-hours on the XSEDE cluster Comet . A
ample convergence plot is shown in Fig. 8 . Linearly extrapolating the
oss curve, we see that it would take at minimum an additional 1000
terations to see the loss drop by another order of magnitude, but given
he convex shape of this curve, it would likely require many more. Given
he computational cost that this would incur, we have not pursued a fur-
her decrease of the relative change in loss by an order of magnitude to
10 −4 . 

.4. Results 

We obtained the inverse solutions on data without filtering and
ith Gaussian filtering using zero mean and standard deviation 𝜎 = 0 . 5
m. Table 4 includes results for these cases 3 Filtering leads to a lower

olume-averaged 𝐿 2 -error between the MRI data and the forward dis-
lacement solution driven by the inverted growth deformation gradient
eld for all cases. However, filtering reduces ‖�̂� 𝜏‖∞ to a degree, espe-
ially because surface effects truncate the integrals where the raw dis-
lacement is expected to be greatest. 

Fig. 9 shows the final forward displacement field solution, 𝒖 𝜏 , ob-
ained during the adjoint-based gradient optimization using data with-
ut filtering. The top and bottom rows in Fig. 9 , show the inferred dis-
lacement field 𝒖 𝜏 on the cortical and ventricular surfaces and are coun-
erparts to Fig. 6 which showed the displacement data fields after regis-
ration. This comparison provides a visual understanding of how close

he inferred 𝑭 g 𝜏 is to the unknown, true ̂𝑭 
g 

𝜏 , using the displacement fields
s surrogates. The second and third rows show the forward displacement
elds corresponding to the interpolated ̃𝒖 𝜏 fields. Note that in each case,
hese are incremental fields, for which reason, interpolation into more
teps over 23–24 and 24–25 weeks results in smaller magnitudes 𝒖 𝜏 . As
 result, over 24–25 weeks, in particular, it appears that the forward
isplacement solution has lower magnitude than the MRI displacement
ata by registration. The corresponding relative error between the MRI
isplacement data by registration and the inferred displacement field,
3 Fig. 13 in the Appendix shows the det 𝑭 g field with an additional level of 
ltering using 𝜎 = 1 mm. 

t  

t
b  

t  

10 
 rel = ( ̂𝒖 − 𝒖 ℎ )∕ |�̂� |, is shown in Fig. 10 . Higher errors appear in locations
f high curvature, e.g. near ventricles and are otherwise homogeneously
pread out over the frontal, parietal, and occipital lobes. Table 4 shows,
or each stage (by week or at interpolated instants) of the inference,
he maximum displacement ‖�̂� ‖∞ and volume-averaged 𝐿 2 -norm of the
rror, as defined in Eq. (24) . Note that ‖𝑒 ( 𝒖 ) ‖2 ≤ 2 × 10 −2 ‖�̂� ‖∞ at each
tage. Furthermore, on summing ‖𝑒 ( 𝒖 ) ‖ over the eight steps interpolat-
ng between weeks 24 and 25 and using the triangle inequality, it fol-
ows that the total volume-averaged 𝐿 2 -error in the forward displace-
ent field from the inference relative to the MRI displacement data is

ounded from above by 4 . 3 × 10 −2 . 
The main goal of this study is the inference of 𝑭 g 𝜏 fields at the time in-

tants, 𝜏, from adjoint-based gradient optimization. Following inference
nd before plotting in the figures that follow, these fields were smoothed
y Gaussian blurring ( Eq. 30 with 𝜎 = 0 . 5 ) in order to minimize artifacts
ntroduced by mesh topology. Fig. 11 shows the volume change induced
y growth alone —i.e., discounting elastic deformation —via det 𝑭 g 𝜏 on
hree representative slices: the coronal, axial and sagittal planes, respec-
ively. Recall that det 𝑭 g 𝜏 is the volume change induced at each stage 𝜏
y cell division and growth following migration. Fig. 11 therefore offers,
o our knowledge, the first data-driven inference of these cell dynam-
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Fig. 9. Inferred displacement fields between 
weeks 21–22, weeks 22–23, weeks 23–24 and 
weeks 24–25 using our adjoint-based optimiza- 
tion approach and shown here for the corti- 
cal and ventricular surface. Changes between 
weeks 23–24 and weeks 24–25 are broken into 
2 and 8 substeps, respectively. Magnitude and 
orientation of the displacement vectors show 

remarkable agreement with the registration re- 
sults shown in Fig. 6 . 

Fig. 10. Relative error vectors represent- 
ing the relative difference between the 
registration-based displacement fields and 
the inferred displacement fields. Maximum 

relative error is smaller than 1.5 and is pri- 
marily observed in locations of high curvature, 
e.g. near ventricles. Generally, we observe a 
homogeneous distribution of the magnitude 
and orientation across all weeks. Arrow size is 

amplified by factor 10 for visualization purposes. . 

Fig. 11. We calculate the determinant of the inferred growth deformation tensor det 𝑭 g for weeks 21–22, 22–23, 23–24, and 24–25 and show them here on the 3D 

geometry, as well as in representative axial, coronal and sagittal slices. The determinant ranges from 0.65 to 1.35 for weeks 21–24 and range from 0.9 to 1.1 for week 
24–25 indicating both localized shrinking and expansion behavior. While growth between weeks 21–24 is mostly homogeneous, a closer look at changes between 
weeks 24 and 25 reveals localized growth fields in the frontal and temporal lobes. The growth fields are mostly symmetric with respect to both hemispheres, but 
differ between individual weeks suggesting a characteristic chronological order to brain development throughout gestation. 
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c  
cs that are the cause of morphoelastic brain growth, and ultimately
f its folding. We draw attention to the radial distribution of growth,
een best in the axial, coronal and sagittal sections and increasing from
ower values near the ventricles to higher in the cortex. This distribu-
ion is the first data-driven confirmation of the assumption underlying
he morphoelastic theory of brain folding: that growth is radially dis-
11 
ributed, increasing along the ventricular-cortical direction. The interpo-
ation of morphoelastic growth displacements over eight steps between
4 and 25 weeks, combined with the treatment using evolving reference
onfigurations, renders the inferred det 𝑭 g 24 , …det 𝑭 g 24 . 875 smaller than

et 𝑭 g 21 , …det 𝑭 g 23 . 5 . The same pattern of radially distributed growth, in-
reasing from ventricles to the cortical surface, is seen for the eight steps
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Fig. 12. We project the growth tensor 𝑭 g onto two distinct directions associated with the surface of the brain: the surface normal and a tangent vector. The tangent 
vector used here provides the maximum tangential projection of 𝑭 g onto the brain surface. We show both projections for each incremental step of our inversion 
process and observe that normal growth is much more homogeneous than tangential growth. Strikingly, tangential growth turns out to be much larger than normal 
growth which supports the notion of in-plane cortical expansion rather than cortical thickening, especially during early fetal brain development. 

Table 5 

The volume-averaged det 𝑭 g 
𝜏
, denoted as det 𝑭 g 

𝜏
in the cortex is larger 

than in the sub-cortex in all cases except for weeks 22–23. 

week 
𝜎

mm 

Cortex Sub-cortex 

det 𝑭 g 
𝜏

max det 𝑭 g 
𝜏

det 𝑭 g 
𝜏

max det 𝑭 g 
𝜏

21–22 N/A 1.080 1.419 1.042 1.459 

0.5 1.058 1.239 1.036 1.371 

22–23 0 1.031 1.413 1.041 1.398 

0.5 1.033 1.240 1.035 1.279 

23-23.5 0 1.071 1.321 1.048 1.337 

0.5 1.057 1.346 1.044 1.252 

23.5–24 N/A 1.071 1.367 1.048 1.364 

0.5 1.057 1.379 1.044 1.244 

24-24.125 N/A 1.021 1.190 1.013 1.140 

0.5 1.016 1.146 1.012 1.089 

24.125-24.25 N/A 1.021 1.211 1.013 1.152 

0.5 1.016 1.165 1.012 1.096 

24.25-24.375 0 1.021 1.227 1.013 1.153 

0.5 1.016 1.176 1.012 1.095 

24.375-24.5 0 1.021 1.229 1.013 1.136 

0.5 1.016 1.180 1.012 1.103 

24.5–24.625 N/A 1.021 1.236 1.013 1.337 

0.5 1.0160 1.184 1.012 1.135 

24.625-24.75 0 1.021 1.233 1.013 1.162 

0.5 1.016 1.185 1.012 1.166 

24.75-24.875 N/A 1.021 1.226 1.013 1.178 

0.5 1.016 1.183 1.012 1.177 

24.875-25 N/A 1.021 1.205 1.013 1.207 

0.5 1.016 1.184 1.012 1.194 
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etween 24 and 25 weeks when plotted over a narrower range on the
ight in Fig. 11 . Also, the volume-averaged det 𝑭 g in the cortex is larger
han in the subcortex in all cases, except for growth between 22 and
3 weeks (see Table 5 ). This strain mismatch between the layers is ad-
itional quantitative validation of the kinematic assumption commonly
sed in morphoelastic growth theories and that drives the emergence of
olding, wrinkling and creasing. 

While it is suggestive to gain a measure of the total growth over
4 to 25 weeks by multiplying det 𝑭 g 24 × det 𝑭 g 24 . 125 ⋯ × det 𝑭 g 24 . 875 , this
s not mathematically correct according to the treatment of evolv-
ng reference configurations. That is, there is no notion of a quan-

ity, say 𝑭 
g 

24−25 = 𝑭 
g 
24 . 875 𝑭 

g 
24 . 75 …𝑭 

g 
24 representing pure growth kinemat-

cs between 24 and 25 weeks. However, the product of determinants
12 
et 𝑭 g 24 . 875 × det 𝑭 g 24 . 75 ×⋯ × det 𝑭 g 24 furnishes an approximate value of
he total growth-driven volume change. From the consistent appear-
nce of det 𝑭 g 𝜏 in the frontal and temporal lobes over the eight steps,
his approximate measure suggests that the growth volume change ra-
io between weeks 24 and 25 approaches the range 1.48 to 2.14 in these
egions. 

Through Fig. 11 it also emerges that growth, whose localization is
ependent on cell dynamics that is complete by week 26 [44] is indeed
ocused in the frontal, parietal and occipital lobes, and the cerebellum.
ur inverse solutions in Fig. 11 suggest that there may be some regions
here det 𝑭 g ≲ 1 , implying local contraction, possibly driven by the mi-
ration of cells away from the corresponding neighborhoods. However
et 𝑭 g ≳ 1 over most of the brain. 

Fig. 12 shows the normal and maximum tangential components of
he growth tensor plotted on the corresponding reference configurations
or each incremental step. We observe that tangential growth is signifi-
antly larger than normal growth which is in line with cortical expansion
uring early growth followed by cortical thickening during later stages.
oreover, we observe that tangential growth is highest where the cen-

ral sulcus forms (week 22–23) and in locations of secondary folding
n the frontal and parietal lobes (week 24–25). Additionally, there are
lightly elevated normal growth components in these respective loca-
ions for week 22–23 and week 24–25 which indicate out of plane de-
ormations of the cortical surface due to folding. These results bear com-
arison with the results of Rajagopalan and co-workers who separately
eported the scalar volume changes [34] and principal growth directions
35] resulting directly from the displacement rather than constrained by
he laws of morphoelastic growth as we have presented here. This find-
ng of greater growth in the local tangential plane of the cortex than in
he perpendicular direction under the constraint of morphoelastic growth is
he first data-driven confirmation of this mechanism to our knowledge.

Finally, we applied Gaussian filtering with zero means and standard
eviations 𝜎 = 1 mm on ̂𝒖 24 . The effect on the inferred 𝑭 g 𝜏 fields from
aussian filtering of the MRI displacement data (introduced at the be-
inning of this section) is presented in the Appendix as Fig. 13 . Larger
lters smooth out the displacement fields obtained from MRI data, and
lso contribute to a more uniform distribution of det 𝑭 g 𝜏 . 

As explained in Section 7.2 , the total deformation gradient tensor
̂
 𝜏 was used as the initial guess for the growth deformation tensor, 𝑭 g 𝜏0 .
ote that the studies of [34,35] reported the scalar volume changes
nd “principal growth directions ” from a differently obtained, but essen-
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Fig. 13. Gaussian filtering with increasing 
standard deviation 𝜎 leads to noticeable 
smoothing of the determinant of the inferred 
growth deformation tensor det 𝑭 g , shown here 
for the example of changes between week 24 
and 25 broken down into two steps. 

Fig. 14. We show the determinant of the total deformation tensor 𝐹 for weeks 21–22, 22–23, 23–24, and 24–25 and show them here on the 3D geometry, as well 
as in representative axial, coronal and sagittal slices. 
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ially the same quantity as 𝑭 𝜏 . We report the inferred 𝑭 g 𝜏 constrained
y the laws of morphoelastic growth in Section 7 . Nevertheless, it is
orth comparing the inferred 𝑭 g 𝜏 with 𝑭 𝜏 , which we present in the
ppendix as shown in Fig. 14 . On comparing with Fig. 11 it is clear

hat det 𝑭 < det 𝑭 g , especially in regions of high growth. It follows that
et 𝑭 e = det 𝑭 ∕ det 𝑭 g < 1 in these regions: Local morphoelastic growth
eads to elastic compression as indicated by our inverse modelling stud-
es. 

. Conclusions 

The morphoelastic theory of growth has formed the basis of a large
ody of computational work on brain development. However, to the
est of our knowledge, it has not been used previously to make infer-
nces on the nature of morphogenesis over the course of development.
ther data-driven approaches have deduced spatiotemporal variations

n the surface growth of fetal brains over weeks 27–37 when the ma-
ority of gyrification and sulcification events occur [14] . However, in
he aforementioned work, elasticity was used to the extent of minimiz-
ng the strain energy for image registration. Our communication takes a
tep in this direction by building on fetal brain atlases. For it, we have
athered a diversity of methods: MR imaging, segmentation and regis-
ration to obtain raw data on the evolving displacement fields that can
e regarded as the mapping underlying the geometric changes in the
rain over many weeks of development, and inverse modelling to infer
he growth tensor via optimization techniques. Notably, the registration
echniques that yield displacement data themselves use inverse mod-
13 
lling and 𝐿 2 gradient flow-based optimization. The optimization meth-
ds that we explored for inferring the growth tensor included gradient
escent of a physics-constrained loss function, and separately, adjoint-
ased gradient optimization, also with the same physics constraint —the
atisfaction of the PDEs of morphoelastic growth in weak form. Also no-
able among our methods is the casting of morphoelastic growth in the
ramework of evolving reference configurations. Without this version of
he morphoelastic growth theory, the problem would become numeri-
ally intractable due to the extremely large changes in morphology even
ver just weeks 21–25 of fetal development. 

We note that the results of the inference consistently show that cell
ynamics distributes growth radially, increasing from the ventricles to
he cortical surface. While the central sulcus begins to form prominently
ver weeks 24–25, we anticipate that the persistence of this radial dis-
ribution leads to the multiscale folding, wrinkling and creasing, whose
imulation has been the main goal of previous forward computations
f brain morphogenesis —albeit without the strongly data-driven ap-
roach that we have adopted here. Our results are broadly in agree-
ent with the premise of Ref. [14] that the growth is larger approach-

ng the cortex, especially in the frontal, parietal and occipital lobes, and
n the cerebellum ( Fig. 11 ), with some asymmetry between the hemi-
pheres ( Fig. 12 ). This qualitative agreement extends to the findings in
ef [34] ., which also show greater growth in roughly the same regions
f the brain. Fig. 12 shows the growth components normal to the cortex
nd the maximum tangential component in the plane of the cortex. No-
ably, tangential growth is dominant at this early stage of growth as is
roadly understood. The latter findings, while preliminary, are relevant
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o an understanding of the role of tangential growth and bear compar-
son with the principal growth direction reported in Ref. [35] . We re-
mphasize, however, that unlike the studies of Refs. [14,34,35] , which
re based on the observed deformation of the developing brain, ours fur-
her subject these deformations to the laws of morphoelastic growth to
nfer the inelastic, driving growth tensor, 𝑭 g . To our knowledge this is
he first confirmation of the dominance of in-plane cortical growth over
hickening during early development under the constraint of the laws of

orphoelastic growth . 
The present work serves as a demonstration that the combination

f brain atlas data and methods of image segmentation, registration,
nd finally physics-constrained inverse modelling can provide greater
nsight to the developmental process. Following this demonstration of
 “proof-of-concept ”, we intend to carry the study forward through to
ater stages of development and track the growth tensor as details of
rimary, secondary, and tertiary gyrification form. Indeed, this is the
ltimate goal of the current effort, and will be followed by a stage of
inking the macroscopic growth tensor to neuron distribution, the out-
rowth of axons and dendrites, and ultimately to pathologies of malfor-
ation. We hope to investigate whether, having inferred that growth is

oncentrated in the frontal, parietal and occipital lobes and the cerebel-
um, we can extend our techniques to also connecting this growth dis-
ribution to the layered distribution of neurons in these cortical regions.
his will require high resolution images to resolve smaller fluctuations

n growth and other techniques to visualize neuron distributions, and
he combination of these data with inference techniques. 

In applying these approaches to subsequent stages of development,
e anticipate that finer meshes will be needed to resolve the emerging
yri and sulci. The inverse solutions by adjoint-based gradient optimiza-
ion will require more iterations to attain convergence. Together, these
spects will lead to greater computational expense of our methods. The
mage registration techniques also will need to be updated in order to
elineate morphological features that form between the weekly time in-
tants. These aspects will be addressed in a future communication. 

The brain atlas data that forms the basis of our work [18] uses av-
raging of the geometry obtained from six to eight MRIs at each week
f gestation. This approach ensures that only the more repeatable mor-
hological features drive the inference, and also helps with eliminating
ome of the noise by averaging. However, it does raise the question of
hether the resulting geometries satisfy the physics of morphoelastic
rowth discussed in Section 2 . In general, this will not be true, given
he nonlinearity of the boundary value problem, and the constitutive
esponse. Having demonstrated the basic viability of our data-driven ap-
roaches, we will investigate the extent to which the averaging induces
 loss of physical fidelity by also working with data from individual
cans in future communications. 
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