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Abstract—In this paper we study two important quality of constraints are just beginning to be studied [4]-[7], [17]-
service (QoS) parameters of dynamic spectrum access (DSA)[20]. Examples of studies on effective bandwidth for wissle
networks with multiple primary and secondary users. We assume networks can be found in [5], [17], [21]-[23]. Studies on

that the SUs are delay tolerant and model the PU and SU .
activity as Markov chains with ON and OFF states. We derive a QoS parameters of CRN include [5], [7], [10], [24]. Some of

closed form expression for the probability distribution of buffer ~ these works use a priority model for the PU and SU activity;
occupancy for secondary networks under steady state conditie however, these models don’'t capture some nuances of DSA

and formulate an expression for the effective bandwidth under networks. For egthey do not allow for the fact that a lower
buffer overflow constraints. Extensive simulations are used to priority SU can still transmit when a PU switches ON, by
validate our analysis. o .
switching to another unoccupied channel. Our current model
Index Terms—Dynamic Spectrum Access, Multi-Primary and s able to address this deficiency.
'\A/'Su'%SE)(;%”?_ZHVB%EZL%rEffeCt'Ve Bandwidth, Buffer occupang, The effective bandwidth and asymptotic tail behavior of
ymp ' delay distribution for SUs in single-channel DSA networks
was analyzed using the law of large numbers in [6]. A large
I. INTRODUCTION deviation approximation of the queue length distributienaa

In this paper we address two important QoS parametersfHFCtion of the PU and SU traffic was investigated ir! [4]. Bgth
DSA networks: (1) the effective bandwidth and, (2) the taffoncluded that the delay and buffer occupancy distribstion
behavior of the transmission buffer. Effective bandwidgh ifor the single-PU networks are light-tailed if the busy pelri
defined as the maximum reliable bandwidth that a netwolk llght-tailed. The asymptotic analysis of the steadyesta
can provide under some predefined QoS constraints [1] af¢eue length distribution of SUs for a single PU channel
reflects the efficiency of resource allocation in the netwoinder heavy-tailed network environment is considered &).[1
[2]. Here, we investigate the effective bandwidth avaiablUnlike [4] and [6] which deriveapproximationsfor the tail
to secondary users (SUs) subject to some maximum puffdd of the distribution |rB|n_gIe-PU networks, we derive the
overflow probability. We assume delay tolerant secondafjf@ct closed-form expression of the buffer occupancy for a
network traffic, where the traffic generated by SUs is bufferéJeneral secondary network comprising multiple channeés ov
for future service when no networks are available (due fB€ entire rangeWe also analyze the asymptotic tail behavior
primary network activity or otherwise). We also study thit ta®f buffer occupancy distribution of general multi-chanb&A
behavior of this queue, since it can be an indicator of netwoR€tworks and show thaftthe busy period distribution for PUs
performance. For eg., a heavy tailed distribution of theugue@re light-tailed, then the buffer occupancy for multi-Sujltia
length, can lead to network performance degradation [3]. PU network is also a light-tailed distribution _ .

Our work proposes an analytically tractable finite-state N [25], the effective capacity for pre-assumed lightdéli
Markov model to jointly describe the PU and SU networkdistribution of the queue occupancy is analyzed whesingle
We model the cognitive radio network (CRN) consisting gfhannel is shared among PUs and the SU. In contrast to [25],
an arbitrary number of SUs and PUs as a continuous tifi¢ analytically derive the distribution of the buffer ocemgy
Markov model, where network users can switch ON and OHR' the CRN and also analyze the effective bandwidth avedlab
at any time [4]-[6]. Also, when a PU turns ON, the channd cognitive users that.have access to an arbif[ra.ry number
associated with that PU (primarily licensed to it) is untatsie  Of channels. The effective capacity for the coexisting CRNs
to SUs. We assume that SUs can dynamically move to anotiHeNakagami wireless fading channels with respect to some
band upon the return of the PU. The buffer behavior for th€lay constraints is addressed in [26]. In [27], the capaufit

system is formulated as a stochastic fluid flow model [7]-[169PPOrtunistic secondary communication for a network of two
independent channels is explored. The achievable raterregi

for CRNs is studied in [28]. The Gaussian throughput for

A. Related Work a CRN coexisting with a primary network is investigated in
Although DSA networks have been well studied in th§2]. The effective capacity for an underlay CRN with a sengl
past decade, the performance of these networks under Quignary and secondary link subject to the average intemfere
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L L » time
! Ny Number of homogeneous SUs
) ) Np Number of homogenous PUs
Fig. 1: Each channel is modeled as an ON-OFF process. TheT; Channel free period random variable
busy and free period random variables are denotedi,nd Tp __ Channel busy period random variable
T.. respectivel A Active time exp. dis. parameter for SUs
fs p Y- Us Idle time exp. dis. parameter for SUs
Ap Active / busy period exp. dis. parameter for PUs / channels
Hp Idle / free period exp. dis. parameter for PUs / channels
and delay constraints is addressed in [23], which calcsilate s gﬁg&%gﬁgg;ﬁi‘ﬁ; frgrteefaocrhesah SU
. . Cp
some bounds on the effective capacity of the model. 0% Dominant decay rate for buffer over flow probability distriiom

Effective bandwidth for a general multi-SU multi-PU DSA™ &* Effective bandwidth available to each SU
networks has not yet been fully explored for dynamic spectru i.;() Cumulative distribution function of buffer occupancy
enabled CRNs. This work studies the effective bandwidth
performance for such networks under certain QoS provisior e s oo e
ing. More specifically, the contributions of this paper are (1) [~~~ """ | rekdwsenicene
closed-form expression for the probability distributiohtle 5
buffer occupancy for secondary networks under steady sta
conditions, (2) formulation and expression for the effesti

Effective bandwidth, a(6)
Effective capacity,a (6)
_—
_—

bandwidth under buffer overflow constraints, (3) analydis o 5|/
sufficient conditions for light-tailed buffer occupancysttibu- TV st gorrion e
tions for CRNs with multiple SUs and multiple PUs. T~
0 QoS decay rate 6 0 QoS decay rate 6
II. SYSTEM MODEL @ ()
Fig. 2: a) Typical effective bandwidthb) Typical effective

Our system model comprises of an arbitrary numbégr, of capacit
homogeneous SUs that independently switch between acfig acy-
and idle states. The SU generates data atgaléts per second

(bps) during the active periods, whether or not it has actessy o -hanisms leading to imperfect knowledge about spectrum
a channel for transmission. The transmission activitieSdé bands. We leave this case for future work

are modeled as independent identically-distributedl(j.Pois- For a fixed access policy, let Q% (t) denote the queue size

son processes, where the intervals between consecu'fimﬂsevgf the tagged SU at time Then, the buffer content of the SU

(active and idle states) are i.i.d. exponentially distiéol This for the nextAt seconds can be modeled as a Lindley process
model captures the burstiness of the data stream [14]. 34] satisfying the following equation [4]:

Since a given channel is essentially unavailable to the CF{N '
upon the return of the PU, channels can also be modeled as Q™ (t + At) = (Q™(t) — d"(t + At))*, Q"(0)=0 (1)
ON-OFF processes. We model the PU network, comprisin .
N, homogenous PUs as a continuous time Markov Cha\fﬁwered”() shows the buffer depletion rate for the tagged SU

(CTMC). Each channel can exist in one of two states: freaé a given time given by:

(when the associated PU is OFF) or busy (when the asso- C7(t + At) — ¢, At active SU
ciated PU is ON). Each channel has bps capacity. The d” = o (t + At) idle SU (2
channel free/busy time is shown in Fig. 1. To make the model

analytically tractable and still capture the charact@ssbf and ()* shows the positive portion, maxQ). At given time

real applications in typical environments, the channey/larsl t, the aggregate buffer occupan€y? (t) is a measure of the
free periods are modeled as i.i.d. exponential randombi&sa performance of the secondary network.

[29]-[31]. Other measured PU traffic duration distribui@n  |n our study, we are interested in characterizing the queue
different channel bands are possible [32]; analysis ofcéffe performance of the first-in first-out (FIFO) channel access
bandwidth for these distributions is deferred for futurerkvo policy when there is perfect knowledge about spectrum bands

The channel is busy for a random time perigdx exp (1,) for SUs determined by the spectrum availability database.
and is free for a random time pericl o« exp (u,). The From now on, we shall omit the superscript
summary of system parameters are identified in Table I.

We assume that there exists a spectrum availability daebab%s
through which the spectrum availability is perfectly known - ] . )
This assumption is reasonable since as per the US Presidedf the multi-user dynamic spectrum access network litera-
Council of Advisors on Science and Technology’s reportigheture, the stochastic behavior of a data arrival processyimps
is a shift towards a database approach for deciding spectrififically modeled by its effective bandwidthThe effective
availability (away from the spectrum sensing approach]. [33 1The effective bandwidth is referred to as the effective cipas well in
When sensing based dynamic spectrum access is the predg

) : - ) - : N[35]. In this paper we use effective bandwidth for theiat service and
inant alternative, there can be imperfections in the s@nsieffective capacity for the service process.

Effective Bandwidth and Capacity



bandwidth is defined as the minimum constant service rgieocess where the data generated by SUs is served by assign-
required to guarantee a given Qa& which characterizes theing one channel for transmission (see Fig. 3 and Sec. II-C
decay rate of the buffer overflow probability for the arrivafor more detail on the system model). Therefore, the effecti
process. We can use large deviations to analyze the asymptbandwidth for such model indicate the maximum data rate
probability distribution of the buffer and decay rate [3[§7]. generated by SUs that can be served for the given channel
For the accumulated arrival proceg#\(t) : t > 0}, which assignment policy. For example, in the CRN with a single
shows the amount of data until tinte the asymptotic log- primary channel that we analyze in the Section IIAgt) is the
moment generating function of the arrival process is definedrival process for a data source with fix data generatiom rat
as,¥Yz(0) =lim, 5 % logE[e’4()],6 > 0, whereE[-] stands which is buffered in the queue ar(t) is the service process
for the expected value. Then, the effective bandwidth fienct for an ON-OFF server illustrated in Fig. 1 (See Section 11-B
of the arrival process is(0) = “’BT@,VO > 0. for the detailed analysis).
Effective capacity is the dual of effective bandwidth and fo In CRNs, due to the dependence between arrival and service
a given cumulative service proce$S(t) : t > 0}, the effective processes through the sensing mechanism, the effectike ban
capacity of the service process can be expressed as rate fuvidth is a function of both the arrival and service processes
tion with respect to9 defined asa.(0) = —M,ve > 0, In the following, we use the buffer overflow probability of
whereWc(-) is the Gartner-Ellis limit of the service process,the dependent system as the QoS indicator to evaluate the
S(t) defined as¥c(6) = lim;_ e % logE[e’5()],6 > 0. The effective bandwidth. The key point is that for the service
effective capacityac (6) is the maximunconstantarrival rate process modeled b§* = 6*(a) at given buffer boundj > 1,
that can be supported for the QoS decay tafé]. and QoS constraint < 1, the effective bandwidtla should
The effective bandwidth theory is a powerful approach tatisfy the approximatios ~ e~7¢" (@),
evaluate the capability of a wireless networks to suppoi# da The objective of this paper is to obtain the maximum
traffic with diverse statistical QoS guarantees [35], [38D}. sustainable arrival rat@*(e) which, by definition, is the
Typical effective bandwidth and effective capacity funag effective bandwidth of the system, calculated for a givelnea
for a queueing system of infinite buffer size is shown in Figf buffer size,q, ande QoS constraint:
2. In Fig. 2a, the average data generation rate of the source .
is a(0), while a(e) denotes the peak data generation rate. a’(e) =arg iqur(Q >q) <e}. ®)
Fig. 2b shows that increasing QoS decay rate decreases the ) ) .
effective capacity that is, as the QoS requirement becombie effectlve_ bandwidths of a network can dgtermlne a CRN’s
more stringent, the source rate that a network can supptirt wiPare capacity to accept more SUs at any time. For instance,
this QoS guarantee, decreases. Fig. 2 illustrates thetgluafity We want to determine if a SU with a new QoS constraint
between the effective bandwidth and effective capacity.[35¢an be accommodated in a CRN that is currently being used
Practically, the QoS decay ratedepends on the statisticalPy Ns SUs with the network inherent QoS constraint. Through
characterization of the arrival and service processedlistta  effective bandwidth analysis, we can determine if by adogpt
ing QoS constraint on the buffer overflow probability. Théhe new SU to the CRN, the new QoS constraint is met or not.

following lemma characterizes the QoS decay rate. The concept of effective bandwidth has been used for resourc
Lemma 2.1:When the Grtner-Ellis limit for the stable allocation problems in LTE CRNs in [41]. _
queue exists, and there is a unique positive soluédnfor: In the following section, we model the arrival and service
processes in the CRN. Later, we find the closed-form expres-
a= _M, (3) sion for the probability distribution function (pdf) of thmiffer
o occupancy, to evaluate the effective bandwidth.

then the buffer overflow probability of a given buffer valge
is independent of time index, and has the following form:

_ —0"q
PrQ>a)=0(e ™). “) Before proceeding with a general network to explain the

where O(-) denotes the Big-O asymptotic notatioa,is the method, we consider a simple network consisting of a single
maximum sustainable arrival rate (the effective bandwidthSU and a single PU, where the SU is active and always
and 0* = 6*(a) is the decay rate of the overflow probabilitygenerates data. L&(q,t) be the cumulative distribution func-
which is the inverse function of the effective bandwidthfoét tion (CDF) of the buffer occupancy at given tinhavhen the
arrival process (i.ea.(0*) = a) [4]. channel is in the free state, thatRs(q,t) = Pr{Q(t) < q,T¢},
Eqg. (3) in Lemma 2.1 indicates the equilibrium state of where Q(t) denotes the buffer content at tinteand Ty is
stable system when the effective bandwidth for the arrivakriod for which the channel is free, as defined earlier. The
process equals to the effective capacity of the servicegsgoc CDF when the channel is busky(g,t), also can be defined
From Eq. (4), we can see that a largérimplies lower buffer in the same way. The distribution parameters for active and
overflow probability, which means a more strict QoS constraiidle periods for the PU arg,, andyu,,, respectively. Therefore,
for the arrival process whereas lower valuesgbdfrepresent the probability that the PU switches from the idle state ® th
looser QoS constraint for the arrival process constraint.  busy state (channel state switches from free to busy) ingéke n

Throughout this paper, we model the CRN as a queidinitesimally smallAt seconds ig:, At [31]. The probability
system where the channel assignment is modeled as serviw no transition happens is-Ju, At. In this case, the amount

B. Cognitive Radio Network with Single Primary Channel



of depletion of the buffer content iscf — c,)At. Thus, the
buffer occupancy CDF for the nexit sec.,Ps(g,t + At), is:

ApAtPy(q.t) + (1 - up AP + (s — Cp)ALE)  (6)

I o, Network

Similar equation can be written for the buffer occupancy CDF
when the PU is in the busy state. Here due to the lack of the
channel access, the buffer content increasg A4, therefore

Po(q.t + At) = pp AtPr(q,t) + (1 - 2, At)Po(q + C,ALE) (7)
Solving Eq. (6) and (7) for infinitesimally smallt, we have:

P 0P ...
= e)5q * gt = PP ® S
R
and
_Cs% + 9Py = upPr— 1,Py (9) Fig. 3: Each channelis associa?ed with a PU and is available_ t
aq ot the SU only when the channel is unused by the corresponding

In our analysis, we are interested in steady state behavigk). The data generated by the SU is placed in its own buffer.
hence the probability distribution has no time variatiod are If a PU returns to the system, the SU can switch to the other
can drop time dependency index. To uniquely determine tB®ailable channels.
solution for the set of first order differential equationsEqg.
(8) and (9), the knowledge of boundary condition is necgssa
When there is no constraint on the buffer content .e. o),
the probability of being in the free or busy stateigco) =
A:;;p and Pp(c0) = Apﬂ+P —. In addition, in the busy state,
when no channel is avallable, the buffer should always
non-empty, i.ePy(0) = 0.

Using the boundary conditions, the buffer occupancy C
in free and busy states are the summation of exponenti
Pr(q) = 1797 + a2 and Py(q) = B187% + B,, where:

f)andwidth is the maximum possible transmit rate for thelstab
system i.e., lig_ a* = cpﬁ.

The analysis carried out in the case of single PU can be
ggneralized to the casd, > 1. In what follows, we extend
our analysis to the general case whdp N, > 1 and SUs
ofan also switch between active and idle states.

| . .
?:S General Cognitive Radio Network
We again model the system as a CTMC. Let the number

0 = A_” __Hr (10) of SUs in the active state, at tintebei and the number of
Cs G =G idle channels bg; the network system state is represented by
and a1 = Csip anday = ~22— and alsog; = the tvyo_—tL_lpIes = (|,_j). We can write the state spac§, =
“ ,(,‘1;1"”‘)(”";11’) b (32 4 dptup ! hﬁld {s=(i,j)li € [0,N,],j € [0,N,]}. The total number of states
~P2 = -5 3%, To have bounded CDF functions, the decay, ;' (N, + 1) x (N, + 1). The corresponding distribution

rate,d, should be positive which results; < cpﬁ, where parameters for active and idle periods for SUs &yeand u;,

C, is the input rate and the RHS is the average service ratespectively. Therefore, the average time for the actiktidle
This inequality is the stability condition. Using Bayes'leu periods for an SU ard ;! and u; !, respectively.

the buffer occupancy CDF iB(q) = Py(q) + P:(q). Eq. (10) When the PU turns active, the corresponding channel (li-
shows that wherty — ¢, —2—, the buffer occupancy CDF censed to the PU) is unavailable for use by any SU. However,

decays very slowly with repspg-ct to the buffer size. an SU in that band can look for and occupy any vacant channel
The buffer overflow probability is PEf > q) = 1 - P(q). upon the return of the PU to its current channel. If any SU
Hence, we have: generates data when there is no available channel, the data
c traffic goes into a buffer associated with that SU (see Fig. 3)
P _ Hp P —0q 11 . A .
rQ>aq = e (11)  Each SU buffers its data stream until it gains access to

+1,C, —Cs e : .
Hp ™ 2p & = B the transmission channel in accordance with the FIFO rule

Following Eq. (5), for the buffer sizg and the QoS constraintj e each SU should wait until all prior channel requests
€, the effective bandwidtha* can be calculated as the solutioryye processed. Therefore, we can model the entire system of
to the nonlinear equation RY(> q) = e. Finding a closed- pyffers as a single virtual aggregate buffeX(-), where the
form expression for this equation is very difficult, howewee content of the aggregate buffer is the summation over the
can study some special cases. For example, for small value:ghtent of all individual SU buffers (see Fig. 3). The agateg
buffer size,q, the effective bandwidth is significantly smallemyffer depletion rate at any stat,; depends on the number
than channel PU's channel capaciyy; < c,. '[lherefore, of free channels and active SUs. The buffer depletion rate at
the effective bandwidth is given bg®. =~ —2d any state and time is:

<cp W'
where €’ = €(1 + 4,/up). Therefore, the maximum rate d = ic. —i 12
that the SU can use to transmit its data with the buffer size ij = 1Cp = 1Cs- (12)
g at the maximum buffer overflow probability is when In Eq. (12), we assume that SUs can use more than one channel
¢y = a*. However, for a large buffer sizg,> 1, the effective at a time to use all the available capacity upon their access.



order terms,0(At?), and use CTMC to derive the following

" partial differential equations [9].

o . i g, P (N i+ DuPra,+ (19)
Nysj+ 1), Nyi)p Y Y = s — 1 sFi-1;
(i) :% @) 4’% (1) ot 7 oq HaTiL
{N(M)/LHM‘ (i+1)A Pisyj + (J+ 1)/11) Pij+1t (Np —-j+ 1)/117 Pij-1
(1) —((Ng =D s +125) +jup + (N, = ])A,)Pi

Fig. 4: The state transition diagram in steady state for djghereP:; = Pi;(g,). At steady state, the probability distri-

CTMC model. bution does not phange with respect to tlm@i(j./at —>.O).
Therefore, the first LHS term in Eq. (14) will vanish at
steady state, and hereafter, we can drop the time ibdit

This can be done by carrier aggregation as discussed in [4%gbability functions. The state transition diagram isvehon

[44]. For the extension of our system model and analysiseto th!9- 4- USing matrix notation, we can reformulate Eq. (14) as
case where aggregation and fragmentation of spectrum bands
is not allowed, we can generalize the buffer depletion rate a
a given state asty = fM(s)c, — F@(s)c,, where, fI()
and f@)(.) are functions of the network state= (i, ). For
eg., the special case of no channel aggregation can be dtu

by assumingf ) (s) = min(,j) and f@(s) = i. Throughout letion di | _ a4 . (12
this paper, we use Eq. (12) for our analysis. The study gepletion diagonal matrix, and; ;s are given in Eq. (12),
NdB = [by, - s,]s1, 5,5 denotes the transition rate matrix of

the generalized buffer depletion rate when there is no crisianﬁ1 "
fragmentation or aggregation is left for future work. the C,T MC model_yvh,ere non-zero transition rates from state
Let P,;(qu.t), i € [O,N,], j € [0,N,] andt,q > 0, be the S=(-]) 10S2=(".J"), by, can be derived based on the
CDF of the probability that the total content of all SU bugfer Mate transition d|ggram n F'g'_‘ll' .
Let z be an eigenvalue oA~"B and ¢ be the associated

does not exceed at the timet wheni SUs are in active and . ) ) . .
j PUs are in idle states i.eB;;(q.t) = PHQ(t) < g ands = right eigenvector i.e.zZA¢ = B¢. Since the primary and

(i,])}. As long as the buffer is not empty, the aggregate buffg?e secopdary network are independent of eqqh ofhethe
is depleted at the instantaneous rdtg. Once all buffers are system eigenvector, has Kronecker decomposition of tira for

empty, they stay in the empty state as long as the combirftd® P where @ denotes the Kronecker-product, agd

data rate of all SUs is less than the available channel dapac‘?md ¢, are eigenvectors of the corresponding independent

that isic, < jc,. The CDF of aggregate buffer occupancfecondary and primary networks and can be explicitly found

P(), can be expressed as a summatiorPgf’s: using generating polynomials [9]. In general, the traositi
' R rate matrix can be written ag, = B, ® B,,, whereB; andB,

P(q.t) = Z P:.;(a,t) (13) are transition rate matrix of the corresponding independen
i<Ng,j<N, secondary and primary networks, respectively andenotes
the Kronecker sum [9]. Although we assume homogeneous

We assume an infinite buffer for all SUs. For such a systerguS and PUs in this paper, the analysis presented here can

the stability condition is satisfied if the long-time avesag .
i . . easily be extended to non-homogenous networks as well by
arrival rate,Dj,, for the entire secondary network is less than

. . . categorizing SUs t&; and PUs toK, different classes. In
the long-time average service ratBq,. It is easy to show .. P
that the network average arrival rateDg, = Nyc, ~2—, and such cases the t'ransmon rle<1te r(r}c?trlx for SUs alrgd F(’kL)Js can
. 1, Astits be substituted withB; = &, By’ and B, = &,"B,",

the average service rate Bout = N, €, 17— We define the \ pare g() or BY) denote the transition rate matrix for a
traffic load factor,p = 5. The system is said to be stable ifgiven class of SUs or PUs, respectively. For example, a<lass
the traffic load factorp is less than unity. based approach has been used to analyze network capacity and

The assumption of the CTMC system model allows us {@source management of wireless home networks in [14].
characterize the aggregate buffer occupancy probabildy d The bounded solution of the stable system characterized by
tribution using Kolmogorov's backward equations. Since ththe equation in Eq. (15) can be expressed as:
periods of idle and active states for the SUs are expongntial
distributed, the probability that for the next time slot, an SU P(a) = aogo + Z e, (16)
turns ON or OFF can be written adl{—i)u,At +O(At?) and 21<0
i 1At +O(At?), respectively, wher@(:) is the Big-O asymp- in which z’s and ¢,’s are eigenvalues and eigenvectors of
totic notation. Similarly, for the PUs, these probabiktiare matrix A~1B. The corresponding coefficient is denoted by
j,upAt+O(At2) and (Np—j)/lpAt+O(At2), respectively. The a;. To uniquely determine the solution of Eq. (15), initial
probability of any compound event @(At?). The probability conditions should be specified. df ; > 0 then the depletion
that there is no change in the states of the PU or SU is givaate in aggregate buffer content is positive and therefate,
by 1— ((Ng = i)us +idg + jup + (N, = j)A,)At + O(At?). steady state, the buffer should be empty. In other words,
Assuming At is infinitesimally small, we can ignore higherthe conditional probability of empty buffer content, given

d
AEP(Q) = BP(q) (15)

where vectorP(-) = [Pgoo(:), -+ ,Pi;(), - ,PNS,NP(-)]',
gd its dimension is the same as the state-space dimension,
Ns +1) X (N, +1). The matrixA = diag(d; ;}s-;, j)es is the



s=(i,j) is Pig=0|s= (i,])} = 1. Therefore, the stationary _
probability is: 0al o ser

P.j(0) =%, d;; =0 (17)

wheren?!is the probabilityi out of Ny SUs are simultaneously

in the active state and®™ is the probability thaj out of N,

channels are free and can be calculated as:

i Ng—i J ANp-i

,SU— (Nc) /l_lsﬂs ﬂ_pu — (Np) :u[’/lpp J (18)
i E) (g + pug)Ns ™ 7 J (/lp+/~1p)Np

where ’f is the total number ofi-combinations ofN;

objects. On the other hand, if the data rate of the active SUs

exceeds the available channel capacity, under steady 8tate iy 5. A comparison of simulation and analytic results, $or
buffer content increases and the buffer cannot stay emty ig )5 and 3PUs. Activities are Poisson distributed.

Pi,j (0) = O, di,j < 0. (19)

0.8 1

Queue size

The other boundary condition that can be used to determinq:Or a system with the same busy state distribution, the

the solution to Eq. (15) is in_finitely large buffer sizg £ co) probability that the channel is free for a longer time, isagee
where, there is no constraint on the buffer content. In thig, e system with a heavy tailed distributiof{") for
case, the only non-zero term in Eq. (16)A>) = aodo- FOI 1o free periods compared to a system with a light tailed
this asymptotic caseR;,j()'s can easily be determined asyjgyipytion [LT) for the free periods. Therefore, the system
Pij(00) = m°n;". Therefore, the total number of Unknownyiw, THT can transmit more often and has less content in the

equals the number of equations in Eq. (17) and (19), Whi%fferfcompared to the system wifff. That is, when the
will enable us to uniquely determine coefficiengs's. means are the same:

Solving Eq. (16), the aggregate buffer occupancy CDF can

be found from Eq. (13) and expressedRg]) = 1-}; a;ezl‘l, PrQ > q TfHT} <PrQ>q TfLT} (22)
wherea; = —a;(1- ¢,), 1 denotes the unit vector ands the
inner product operator. Based on the definition, for any light-tailed free periodtilis

Result 2.2:The aggregate buffer overflow probability is 3oution,Tf'-T, we have:
weighted summation of exponentials for different systent a
can be expressed as: pr{TfLT >t} <e ¥, ¢ >0. (23)
P = Seid 2 . . e :
Q> al Zz: %€ (20) For any light-tailed busy period distribution, we can algadfi

an exponential distribution which satisfies:
Eq. (20) shows that the dominant decay rats, can be P

determined using the system eigenvalues as: Pr{TbLT St)<e® g >0 (24)
6" =-maxz :z <0} (21)
l Therefore, from Eq. (22), (23) and (24), for any queue system
Formulation in Eg. (20) is one of the main contributions oWith light-tailed busy period distribution and a given free
this paper and gives the closed-form expression for the pdfperiod distribution, there is a queue system with expoaénti
the secondary network buffer occupancy. distributed busy and free periods such that the former queue
system outperforms the latter system. Then, we have:
I1l. ASYMPTOTIC ANALYSIS OF BUFFER OCCUPANCY
DISTRIBUTION PrQ > q.Ty") < Pr{Q > q.Tp « exp@b). Tr « exp(@r)} (25)

In this section, we provide some insight into the asymptotj . .
behavior of the secondary network buffer occupancy atr{&e already showed in Sec. II-C that for any system with free
and busy periods distributed exponentially, the networfkelbu

analyze the tail of distribution. o ) : S
overflow probability is a summation of exponentials which is

Result 3.1The buffer occupancy distribution is light-taifed _ N o .
if the channel busy period dii)strib)lljtion is Iight-tailgd a light-tailed distribution. Substituting Eq. (20) in E@), we
rQ{;jlve the following inequality:

This can be seen by using the following argument. For t
secondary network, we consider the worst case scenario when
all SUs are always active by letting, — 0. The network
buffer overflow probability for any other type of SU activity
is smaller for any buffer content valug, The RHS expression in Eq. (26) is zero for afy< 6*

2A random variable X, is light-tailed if there is som@ > O such that (where 6" is given in EQ- (21))’ V\.lhlc.:h |.mpI|es thathe
My e e®*Pr{X > x} = 0, and if there is no such, it is called heavy- PUffer occupancy has a light-tailed distribution as longthe
tailed random variable. channel busy state is light-tailed distributed

lim &’9PHQ > g, Ty} < lim &4 3" aje (26)



IV. EFFECTIVE BANDWIDTH 08

In general, finding closed-form expression for the effectiv
bandwidth in Eq. (5) is difficult and the overflow probability s
Eg. (20) should be numerically evaluated. However, in som
special cases good approximations can be made.

—— Analytical
+  Simulation
== Asymptotic

Analytical

05 by == Asymptotic
\\ - = = Approximation in [4]

Log P(Q>q)/q
) »
&

A. Effective Bandwidth for Single Channel and Multiple SUs
In the following, we consider the single channel case whe ™ * . & ¢ © QoS exponent

Buffer size

the channel is always availablg,( — 0). The dominant decay @) (b)
power in this case can be calculated analytically and is:

Fig. 6: Single SU, single PU network) Decay rate for buffer
ot - Ns (NsCyps — Cp (s + ps)) (27) occupancy probabilityh) Numerical evaluation of Eq. (11) for
Ns Cp(NyCs — Cp) overflow probability fixed ak = 1073

This can be seen from the following argument. Any eigen-
value z and eigenvectow = (41,--- ,¢n,) for the system B Effective Bandwidth for Single SU and Multiple Channel
described in Sec. Il should satisfy the following equatig [ This case is the dual of the problem considered in Sec.

2(iCy — )i = p1s (N +1—1);_1— (N —i) s +id)¢; (28) IV-A.When there areN, channels and the SU is always active
(15 — 0), using the same approach as Sec. IV-A, the dominant

+Hi+1)Aspina decay rate is:
The eigenvector generating power series can be defined as 05, = Np (N € dp = Cs(4p + p1p)) (35)
r

cs(NpCp —C5)
This can be seen from the following argument. Using the
same method as Sec. IV-A, the generating power series can

#(X) = X; ¢:x'. EQ. (28) can be written in differential form,

¢(X) (ZCp_ Ns,us"'N,st) = ¢, (X)(,us X2+(ZQY+/ls_,us)X_/ls)'

(29) _be witten in the form of Eq. (30), wh
The solution to the differential Eq. (29) can be expressed a e written in the form of Eq. (30), where, , are
— T _ 2
$(x) = (x = x2)* (x = x) "V 7+ (30) (6p2+ A = 1) (624 Ap = p)? + dup )
. . 24 ’
wherek < N, is an integer, and In this case, the dominant decay power is the solutionge-
—(Csz+ Ay — pg) + \/(CsZ+ As — )2+ Bug A N, A, + Np1,Xx1 = 0. By substitutionx;, the dominant decay
X12 = 20, . power can be found as:
: . . (31) _ Np(NCpdp — Cs(4)p + 1))
The dominant decay power is the solution#g, — Ny, + z= (37)

Cs(NpCp — C5)
For Np = 1, the decay rate can be simplified @(}}, =
2(4c; ~AN, Cp C;)+(4NFCy 15 —4N;Cp A5 =4NCp 1) = 0 (32) Ao _ _Hr_ \which was also calculated in Eq. (10). Using the
The solution to the Eq. (32) gives the smallest elgenvaldéq (3§) the effective bandwidth can be approximated as:

From this, the dommant decay power can be found is a ~ Np A o
Ne(Nsesis—cp(: 1)) The probability distribution in Eq. (20) v, (€) ~ 7( p (4 * pp)a/loge)

c 7(NAC>_(~p)

can be reformulated as:

N, us X1 = 0, which results in the following equation:

(38)

N
+?”\/(cp +(Ap + up)a/loge)? — 4c, 1,0/ loge)

PHQ>q} = ag-e 9+ a el 33
1Q>al=a Z_: ! 33) It can be easily verified that for large buffer sizg-6 o) the
z1#—6 i . .
) . ) ~ effective bandwidth will be:
where ay- is the coefficient corresponding to the dominant 1
decay rate. To have a closed-form expression for the efgecti a}*\,p - N,,c,,/lTp (39)
bandwidth, we can approximate this coefficientags ~ 1 He

[45]. Whengq > 1, we can also ignore the RHS summation ifNote that the asymptotic effective bandwidth for the networ
Eq. (33). Using Eq. (4), for the QoS constraintand buffer With single SU and single PU with the channel capacgy:
size g, the effective bandwidth can be approximated as: N, Cp is equal to Eq. (39); however, the decay ratéljstimes
N . 2| slower and using Eq. (35), it can be expressed as

S‘C N + s) = c, 10

Gl ) G 109¢/ g o - NoGpdp —Cily ) 1

Ny (Ns 5 — € l0g €/0) Np ~ cs(NyCp — Cy) N_p9 (40)

Eq. (34) shows that the effective bandW|dtha;§ =Gy ’;\,tf This is also the case for the decay rate of a network comprisin
whenqg — oo, which is the maximum data generatlon rate foa single PU and a smgle SU with a generation @te N,c;,
the stable system when the load factor is unjtys 1. say 05 ;' as we havey, = 10* N,

ay, (€) ~
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log P(Q>q)/q
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S
Effective Bandwidth
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F|g 7: The dominant decay ratB,gP%qﬂ vs Buffer size for Flg 8: Effective bandwidth for systems Wltb) Single chan-

the network consisting of a single' SU and two PUs fay, nel, multiple SUs (approximation error < 1% faoy > 10),

p11 = 0.4 andpo; = 0.6, b) p11 = 0.8 andpgy = 0.2. b) single SU, multiple PUs (approximation error < 2% for
g > 10).

o 2

C. General Case NN, > 1

For the general case, finding a closed-form expressifffl: the system of a single (always ON) SU with two-state

for the effective bandwidth is very difficult. However, thechannels is modeled as Markov chain with transition proba-
dominant decay rate is a root of equation [9], bilities, p11 = Prlfree — free] andpio = Prlfree — busy].
For the sake of comparison, we study the special case of
NsVPs(0) + Ny /P, (0) — N, (Cp6 + 1y, + 2,)

(41) Pp11=Po1= m ﬂ”di and 1, — oo to compare our results with
_Ns(_csg Tus t /13') =0,

the result in P[4]f In Fig. 6b, transition probabilities fonet
Markov chain arep;; = 0.65 andpyp = 0.35. In [4], using the
approximation PIQ > q) ~ e 94, the asymptotic effective
bandwidth has been provided. From Fig. 6b, it can be seen

at the approximation provided in [4] follows the analgtic
esults however, the approximation error increases as & Q
gxponent increases.

The dominant decay rate for the single-SU network with
different simulation setups are shown in Fig 7. Fig. 7a shows
the dominant decay rate for the system of two PUs with
active and idle rated,, = 0.4 andy, = 0.6, respectively. To
compare results with the study in [4], we skt — « (always
active SU) and set the transition probabilitipg = 0.4 and

The simulation parameters are identified in Table Il. Fig. fo1 = 0.6. Fig. 7b shows the decay rate for the network with
shows that the experimental and theoretical values forebuftransition probabilitieg1 = 0.8 andpo; = 0.2. Fig. 7 verifies
overflow probability PfQ > q}, match. our results and shows that our analytical formulationseuehyf

Fig. 6a shows the dominant decay rate of the buffer overfldit the bounds derived in [4].
probability single SU single PU network analyzed in SedIl- In Fig. 8a, the effective bandwidth available to each SU
for fixed packet generation rate & 0.7). It demonstrates that for the system of always available single channel with three
log Pr@Q > q)/q converges te-0* as the buffer size increasesSUs is plotted. As it can be seen from Fig. 8a, the available
It can be seen that the approximation of the asymptotic deceffective bandwidth for the zero-size buffer zia%zo = 043
in Eqg. (35) is true even for moderate buffer sizes. which is the ratio of the channel capacity to the number of

The plot in Fig. 6b shows the effective capacity of th&Us,c,/N,. However, in Fig. 8b, for the system of multiple
stable system Eq. (3) versus the QoS exponeRg<, which PUs where channels alternate between free and busy states,
is similar to the typical effective capacity plot in Fig. 2ln  the zero-size buffer effective bandwidth is zero, implythgt
to have a constant data rate, a non-zero buffer is necessary.
Fig. 8b shows the effective bandwidth for the network of a
single SU with five PUs. Fig. 8 shows that effective bandwidth

whereP,(6) = (c,0 + u, — 1,)? + 4u, 1, and alsoPs () =
(Cs0 — s + A5)2 + 4ug Ag. After finding 6%, we use the same
approximation as Section IV-A and IV-B. Therefore, Eg. (33
and (41) implicitly express the relationship between tHecef
tive bandwidth and the overflow probability, which must b
evaluated numerically. For the special case of large bsffar
(q — ), the maximum sustainable rate happens whenl.

; ; ok _ Npcpdp Astps
Then the effective bandwidth &, ., = =&~ T,

V. NUMERICAL RESULTS

TABLE II: Simulation parameters

Fig.5 Fig.6 Fig.7a/7b Fig.8a Fig. 8b Fig. 9a formulation in Eq. (27) and (38) are very good approximagion
xs g i % i é g (less than 1% error for large buffer sizes).
A 2 . . 1.2 . 1.2 The effective bandwidth for a general network consisting of
Hs 10 - - 0.5 - 0.5 multiple SUs and multiple PUs (5 SUs and 3 PUs) is shown in
Ap | 67 06 04/08 - 0.7 0.7 Fig. 9a which depicts the impact of increasing the QoS con-
up | 47 0.3 0.6/0.2 - 1 1 . . . o
s 1 0.4 03/ 1.4 . i . strainte on the effective bandwidth far= 107",i = {1,2,3,4}.
cp | 25 1 1 1.3 0.7 0.8 As we expect, the more strict QoS constraint, the lower
€ - 1078 - 10° 107 - effective bandwidth for the same buffer size. However, as it
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Fig. 9: The impact of system parameters on the effective ban?s]
width for, a) the system of multiple SUs, multiple channels

for different e value, b) given QoS constraing = 1073,
[7]

can be seen, all curves converge to the asymptotic effecti\@
bandwidth value for large buffer sizes.

Fig. 9b shows effective bandwidth for different buffer size [©]
(e = 1073, C, = 1). Table Ill shows the simulation parameters[w]
In System I, the average channel free peridd £ 1/u,) is
doubled, and as we expect, the effective bandwidth for SU4l
increases, however, in System Ill, where the average channe
busy period T, = 1/u,) is doubled, the effective bandwidth12]
decreases. The opposite argument holds for the activitggser
of SUs i.e., in the System IV where the average SU actiyg,
time is doubled, the effective bandwidth decreases while,
doubling the average SU idle time in System V, increaséi«]
the effective bandwidth. System VI and VII show the impact
of decreasing number of SUS() and increasing number of [15]
PUs (N,,), respectively, on the effective bandwidth. Note rate
of convergence to the asymptotic values are different fer “f&ﬁ]
different systems. For example, the the fastest Systemd®ys
II) reaches 95% of its asymptotic value for buffer sige 5.7
while, the slowest System (System lll) reaches that value 4]
buffer size § = 11.8).

[18]
VI. CONCLUSION AND FUTURE WORK

We analyzed the effective bandwidth for a general CRN9]
consisting of multiple PUs and multiple SUs, by defining a
stochastic fluid flow model for the SU buffer occupancy an@o]
a CTMC to capture the dynamic nature of the PU and SU
activities. We obtained the first ever closed-form expiassi
for the effective bandwidth for general DSA networks. Wi
also provided the asymptotic tail distribution analysis thus
type of network, where we showed the buffer occupancy &l
a light-tailed distribution if the busy period for channele
light-tail distributed. This work can be extended to caskem® [23]
fragmentation and aggregation are not supported as well as
different distribution of PU traffic developed recently [32

[24]
TABLE III: Simulation parameters for Fig. 9b

System[ I 1l IV _V VI Vi [25]
Ny |7 7 7 7 7 6 7
Ny [3 3 3 3 3 3 2 [26]
Ay |10 10 10 5 10 10 10
s | 14 14 14 14 7 14 14
i, |6 6 3 6 6 6 6 27]
up | 4 2 4 4 4 4 4
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