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Abstract—In this paper we study two important quality of
service (QoS) parameters of dynamic spectrum access (DSA)
networks with multiple primary and secondary users. We assume
that the SUs are delay tolerant and model the PU and SU
activity as Markov chains with ON and OFF states. We derive a
closed form expression for the probability distribution of buffer
occupancy for secondary networks under steady state conditions
and formulate an expression for the effective bandwidth under
buffer overflow constraints. Extensive simulations are used to
validate our analysis.
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I. I NTRODUCTION

In this paper we address two important QoS parameters of
DSA networks: (1) the effective bandwidth and, (2) the tail
behavior of the transmission buffer. Effective bandwidth is
defined as the maximum reliable bandwidth that a network
can provide under some predefined QoS constraints [1] and
reflects the efficiency of resource allocation in the network
[2]. Here, we investigate the effective bandwidth available
to secondary users (SUs) subject to some maximum buffer
overflow probability. We assume delay tolerant secondary
network traffic, where the traffic generated by SUs is buffered
for future service when no networks are available (due to
primary network activity or otherwise). We also study the tail
behavior of this queue, since it can be an indicator of network
performance. For eg., a heavy tailed distribution of the queue
length, can lead to network performance degradation [3].

Our work proposes an analytically tractable finite-state
Markov model to jointly describe the PU and SU network.
We model the cognitive radio network (CRN) consisting of
an arbitrary number of SUs and PUs as a continuous time
Markov model, where network users can switch ON and OFF
at any time [4]–[6]. Also, when a PU turns ON, the channel
associated with that PU (primarily licensed to it) is unavailable
to SUs. We assume that SUs can dynamically move to another
band upon the return of the PU. The buffer behavior for this
system is formulated as a stochastic fluid flow model [7]–[16].

A. Related Work

Although DSA networks have been well studied in the
past decade, the performance of these networks under QoS

constraints are just beginning to be studied [4]–[7], [17]–
[20]. Examples of studies on effective bandwidth for wireless
networks can be found in [5], [17], [21]–[23]. Studies on
QoS parameters of CRN include [5], [7], [10], [24]. Some of
these works use a priority model for the PU and SU activity;
however, these models don’t capture some nuances of DSA
networks. For eg.,they do not allow for the fact that a lower
priority SU can still transmit when a PU switches ON, by
switching to another unoccupied channel. Our current model
is able to address this deficiency.

The effective bandwidth and asymptotic tail behavior of
delay distribution for SUs in single-channel DSA networks
was analyzed using the law of large numbers in [6]. A large
deviation approximation of the queue length distribution as a
function of the PU and SU traffic was investigated in [4]. Both
concluded that the delay and buffer occupancy distributions
for the single-PU networks are light-tailed if the busy period
is light-tailed. The asymptotic analysis of the steady-state
queue length distribution of SUs for a single PU channel
under heavy-tailed network environment is considered in [18].
Unlike [4] and [6] which deriveapproximationsfor the tail
end of the distribution insingle-PU networks, we derive the
exact closed-form expression of the buffer occupancy for a
general secondary network comprising multiple channels over
the entire range.We also analyze the asymptotic tail behavior
of buffer occupancy distribution of general multi-channelDSA
networks and show thatif the busy period distribution for PUs
are light-tailed, then the buffer occupancy for multi-SU, multi-
PU network is also a light-tailed distribution.

In [25], the effective capacity for pre-assumed light-tailed
distribution of the queue occupancy is analyzed where asingle
channel is shared among PUs and the SU. In contrast to [25],
we analytically derive the distribution of the buffer occupancy
for the CRN and also analyze the effective bandwidth available
to cognitive users that have access to an arbitrary number
of channels. The effective capacity for the coexisting CRNs
in Nakagami wireless fading channels with respect to some
delay constraints is addressed in [26]. In [27], the capacity of
opportunistic secondary communication for a network of two
independent channels is explored. The achievable rate region
for CRNs is studied in [28]. The Gaussian throughput for
a CRN coexisting with a primary network is investigated in
[22]. The effective capacity for an underlay CRN with a single
primary and secondary link subject to the average interference
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Fig. 1: Each channel is modeled as an ON-OFF process. The
busy and free period random variables are denoted byTb and
Tf , respectively.

and delay constraints is addressed in [23], which calculates
some bounds on the effective capacity of the model.

Effective bandwidth for a general multi-SU multi-PU DSA
networks has not yet been fully explored for dynamic spectrum
enabled CRNs. This work studies the effective bandwidth
performance for such networks under certain QoS provision-
ing. More specifically, the contributions of this paper are (1)
closed-form expression for the probability distribution of the
buffer occupancy for secondary networks under steady state
conditions, (2) formulation and expression for the effective
bandwidth under buffer overflow constraints, (3) analysis of
sufficient conditions for light-tailed buffer occupancy distribu-
tions for CRNs with multiple SUs and multiple PUs.

II. SYSTEM MODEL

Our system model comprises of an arbitrary number,Ns , of
homogeneous SUs that independently switch between active
and idle states. The SU generates data at ratecs bits per second
(bps) during the active periods, whether or not it has accessto
a channel for transmission. The transmission activities ofSUs
are modeled as independent identically-distributed (i.i.d.) Pois-
son processes, where the intervals between consecutive events
(active and idle states) are i.i.d. exponentially distributed. This
model captures the burstiness of the data stream [14].

Since a given channel is essentially unavailable to the CRN
upon the return of the PU, channels can also be modeled as
ON-OFF processes. We model the PU network, comprising
Np homogenous PUs as a continuous time Markov chain
(CTMC). Each channel can exist in one of two states: free
(when the associated PU is OFF) or busy (when the asso-
ciated PU is ON). Each channel hascp bps capacity. The
channel free/busy time is shown in Fig. 1. To make the model
analytically tractable and still capture the characteristics of
real applications in typical environments, the channel busy and
free periods are modeled as i.i.d. exponential random variables
[29]–[31]. Other measured PU traffic duration distributions on
different channel bands are possible [32]; analysis of effective
bandwidth for these distributions is deferred for future work.

The channel is busy for a random time periodTb ∝ exp (λp )
and is free for a random time periodTf ∝ exp (µp ). The
summary of system parameters are identified in Table I.

We assume that there exists a spectrum availability database
through which the spectrum availability is perfectly known.
This assumption is reasonable since as per the US President
Council of Advisors on Science and Technology’s report, there
is a shift towards a database approach for deciding spectrum
availability (away from the spectrum sensing approach) [33].
When sensing based dynamic spectrum access is the predom-
inant alternative, there can be imperfections in the sensing

TABLE I: Notations

Ns Number of homogeneous SUs
Np Number of homogenous PUs
Tf Channel free period random variable
Tb Channel busy period random variable
λs Active time exp. dis. parameter for SUs
µs Idle time exp. dis. parameter for SUs
λp Active / busy period exp. dis. parameter for PUs / channels
µp Idle / free period exp. dis. parameter for PUs / channels
cs Traffic generation rate for each SU
cp Channel capacity for each PU
θ∗ Dominant decay rate for buffer over flow probability distribution
a∗ Effective bandwidth available to each SU

Pi, j (·) Cumulative distribution function of buffer occupancy
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Fig. 2: a) Typical effective bandwidth,b) Typical effective
capacity.

mechanisms leading to imperfect knowledge about spectrum
bands. We leave this case for future work.

For a fixed access policyπ, let Qπ (t) denote the queue size
of the tagged SU at timet. Then, the buffer content of the SU
for the next∆t seconds can be modeled as a Lindley process
[34] satisfying the following equation [4]:

Qπ (t + ∆t) = (Qπ (t) − dπ (t + ∆t))+, Qπ (0) = 0 (1)

wheredπ (·) shows the buffer depletion rate for the tagged SU
at a given time given by:

dπ
=









cπ (t + ∆t) − cs∆t active SU

cπ (t + ∆t) idle SU
(2)

and (·)+ shows the positive portion, max(·,0). At given time
t, the aggregate buffer occupancy,Qπ (t) is a measure of the
performance of the secondary network.

In our study, we are interested in characterizing the queue
performance of the first-in first-out (FIFO) channel access
policy when there is perfect knowledge about spectrum bands
for SUs determined by the spectrum availability database.
From now on, we shall omit the superscriptπ.

A. Effective Bandwidth and Capacity

In the multi-user dynamic spectrum access network litera-
ture, the stochastic behavior of a data arrival process is asymp-
totically modeled by its effective bandwidth1. The effective

1The effective bandwidth is referred to as the effective capacity as well in
[4], [35]. In this paper we use effective bandwidth for the arrival service and
effective capacity for the service process.
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bandwidth is defined as the minimum constant service rate
required to guarantee a given QoS,θ, which characterizes the
decay rate of the buffer overflow probability for the arrival
process. We can use large deviations to analyze the asymptotic
probability distribution of the buffer and decay rate [36],[37].

For the accumulated arrival process,{A(t) : t ≥ 0}, which
shows the amount of data until timet, the asymptotic log-
moment generating function of the arrival process is defined
as,ΨB (θ) = lim t→∞

1
t

logE[eθA(t )], θ > 0, whereE[·] stands
for the expected value. Then, the effective bandwidth function
of the arrival process is,a(θ) = ΨB (θ)

θ
,∀θ > 0.

Effective capacity is the dual of effective bandwidth and for
a given cumulative service process,{S(t) : t ≥ 0}, the effective
capacity of the service process can be expressed as rate func-
tion with respect toθ defined as,ac (θ) = −ΨC (−θ)

θ
,∀θ > 0,

whereΨC (·) is the G
··
artner-Ellis limit of the service process,

S(t) defined as,ΨC (θ) = lim t→∞
1
t

logE[eθS (t )], θ > 0. The
effective capacity,aC (θ) is the maximumconstantarrival rate
that can be supported for the QoS decay rateθ [1].

The effective bandwidth theory is a powerful approach to
evaluate the capability of a wireless networks to support data
traffic with diverse statistical QoS guarantees [35], [38]–[40].

Typical effective bandwidth and effective capacity functions
for a queueing system of infinite buffer size is shown in Fig
2. In Fig. 2a, the average data generation rate of the source
is a(0), while a(∞) denotes the peak data generation rate.
Fig. 2b shows that increasing QoS decay rate decreases the
effective capacity that is, as the QoS requirement becomes
more stringent, the source rate that a network can support with
this QoS guarantee, decreases. Fig. 2 illustrates the duality
between the effective bandwidth and effective capacity [35].

Practically, the QoS decay rate,θ depends on the statistical
characterization of the arrival and service processes establish-
ing QoS constraint on the buffer overflow probability. The
following lemma characterizes the QoS decay rate.

Lemma 2.1:When the G
··
artner-Ellis limit for the stable

queue exists, and there is a unique positive solution,θ∗, for:

a = −
ΨC (−θ)
θ

, (3)

then the buffer overflow probability of a given buffer valueq
is independent of time index,t, and has the following form:

Pr(Q > q) = O(e−θ
∗q ), (4)

whereO(·) denotes the Big-O asymptotic notation,a is the
maximum sustainable arrival rate (the effective bandwidth),
and θ∗ = θ∗ (a) is the decay rate of the overflow probability
which is the inverse function of the effective bandwidth of the
arrival process (i.e.ac (θ∗) = a) [4].
Eq. (3) in Lemma 2.1 indicates the equilibrium state of a
stable system when the effective bandwidth for the arrival
process equals to the effective capacity of the service process.
From Eq. (4), we can see that a largerθ∗ implies lower buffer
overflow probability, which means a more strict QoS constraint
for the arrival process whereas lower values ofθ∗ represent
looser QoS constraint for the arrival process constraint.

Throughout this paper, we model the CRN as a queue
system where the channel assignment is modeled as service

process where the data generated by SUs is served by assign-
ing one channel for transmission (see Fig. 3 and Sec. II-C
for more detail on the system model). Therefore, the effective
bandwidth for such model indicate the maximum data rate
generated by SUs that can be served for the given channel
assignment policy. For example, in the CRN with a single
primary channel that we analyze in the Section II-B,A(t) is the
arrival process for a data source with fix data generation rate
which is buffered in the queue andS(t) is the service process
for an ON-OFF server illustrated in Fig. 1 (See Section II-B
for the detailed analysis).

In CRNs, due to the dependence between arrival and service
processes through the sensing mechanism, the effective band-
width is a function of both the arrival and service processes.
In the following, we use the buffer overflow probability of
the dependent system as the QoS indicator to evaluate the
effective bandwidth. The key point is that for the service
process modeled byθ∗ = θ∗ (a) at given buffer boundq≫ 1,
and QoS constraintǫ ≪ 1, the effective bandwidtha should
satisfy the approximationǫ ≈ e−qθ

∗ (a).
The objective of this paper is to obtain the maximum

sustainable arrival ratea∗ (ǫ ) which, by definition, is the
effective bandwidth of the system, calculated for a given value
of buffer size,q, andǫ QoS constraint:

a∗ (ǫ ) = arg sup
a
{Pr(Q > q) ≤ ǫ } . (5)

The effective bandwidths of a network can determine a CRN’s
spare capacity to accept more SUs at any time. For instance,
say we want to determine if a SU with a new QoS constraint
can be accommodated in a CRN that is currently being used
by Ns SUs with the network inherent QoS constraint. Through
effective bandwidth analysis, we can determine if by accepting
the new SU to the CRN, the new QoS constraint is met or not.
The concept of effective bandwidth has been used for resource
allocation problems in LTE CRNs in [41].

In the following section, we model the arrival and service
processes in the CRN. Later, we find the closed-form expres-
sion for the probability distribution function (pdf) of thebuffer
occupancy, to evaluate the effective bandwidth.

B. Cognitive Radio Network with Single Primary Channel

Before proceeding with a general network to explain the
method, we consider a simple network consisting of a single
SU and a single PU, where the SU is active and always
generates data. LetPf (q, t) be the cumulative distribution func-
tion (CDF) of the buffer occupancy at given timet when the
channel is in the free state, that isPf (q, t) = Pr{Q(t) ≤ q,Tf },
where Q(t) denotes the buffer content at timet and Tf is
period for which the channel is free, as defined earlier. The
CDF when the channel is busy,Pb(q, t), also can be defined
in the same way. The distribution parameters for active and
idle periods for the PU areλp andµp , respectively. Therefore,
the probability that the PU switches from the idle state to the
busy state (channel state switches from free to busy) in the next
infinitesimally small∆t seconds isµp∆t [31]. The probability
that no transition happens is 1− µp∆t. In this case, the amount
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of depletion of the buffer content is (cp − cs )∆t. Thus, the
buffer occupancy CDF for the next∆t sec.,Pf (q, t + ∆t), is:

λp∆tPb(q, t) + (1− µp∆t)Pf (q + (cs − cp )∆t, t) (6)

Similar equation can be written for the buffer occupancy CDF
when the PU is in the busy state. Here due to the lack of the
channel access, the buffer content increase iscs∆t, therefore

Pb(q, t + ∆t) = µp∆tPf (q, t) + (1− λp∆t)Pb(q + cs∆t, t) (7)

Solving Eq. (6) and (7) for infinitesimally small∆t, we have:

(cp − cs )
∂Pf

∂q
+
∂Pf

∂t
= λpPb − µpPf (8)

and

−cs
∂Pb

∂q
+
∂Pb

∂t
= µpPf − λpPb (9)

In our analysis, we are interested in steady state behavior,
hence the probability distribution has no time variation and we
can drop time dependency index. To uniquely determine the
solution for the set of first order differential equations inEq.
(8) and (9), the knowledge of boundary condition is necessary.
When there is no constraint on the buffer content (i.e.q = ∞),
the probability of being in the free or busy states isPf (∞) =

λp

λp+µp
and Pb(∞) =

µp

λp+µp
. In addition, in the busy state,

when no channel is available, the buffer should always be
non-empty, i.e.Pb(0) = 0.

Using the boundary conditions, the buffer occupancy CDF
in free and busy states are the summation of exponentials
Pf (q) = α1e−θq + α2 and Pb(q) = β1e−θq + β2, where:

θ =
λp

cs
−
µp

cp − cs
(10)

and α1 =
cs µp

(cp−cs )(µp+λp ) and α2 =
λp

λp+µp
, and alsoβ1 =

−β2 = −
µp

µp+λp
. To have bounded CDF functions, the decay

rate,θ, should be positive which results,cs < cp
λp

λp+µp
, where

cs is the input rate and the RHS is the average service rate.
This inequality is the stability condition. Using Bayes’ rule,
the buffer occupancy CDF isP(q) = Pb(q) + Pf (q). Eq. (10)
shows that whencs → cp

λp

λp+µp
, the buffer occupancy CDF

decays very slowly with respect to the buffer size.
The buffer overflow probability is Pr(Q > q) = 1 − P(q).

Hence, we have:

Pr(Q > q) =
µp

µp + λp

cp
cp − cs

e−θq (11)

Following Eq. (5), for the buffer sizeq and the QoS constraint
ǫ , the effective bandwidth,a∗ can be calculated as the solution
to the nonlinear equation Pr(Q > q) = ǫ . Finding a closed-
form expression for this equation is very difficult, however, we
can study some special cases. For example, for small value of
buffer size,q, the effective bandwidth is significantly smaller
than channel PU’s channel capacity,a∗ ≪ cp . Therefore,
the effective bandwidth is given by,a∗

a∗≪cp
≈

λpcpq

µpq−cp logǫ′ ,
where ǫ ′ = ǫ (1 + λp/µp ). Therefore, the maximum rate
that the SU can use to transmit its data with the buffer size
q at the maximum buffer overflow probabilityǫ is when
cs = a∗. However, for a large buffer size,q≫ 1, the effective
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th SU
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Fig. 3: Each channel is associated with a PU and is available to
the SU only when the channel is unused by the corresponding
PU. The data generated by the SU is placed in its own buffer.
If a PU returns to the system, the SU can switch to the other
available channels.

bandwidth is the maximum possible transmit rate for the stable
system i.e., limq→∞ a∗

= cp
λp

λp+µp
.

The analysis carried out in the case of single PU can be
generalized to the caseNp > 1. In what follows, we extend
our analysis to the general case whenNs ,Np ≥ 1 and SUs
can also switch between active and idle states.

C. General Cognitive Radio Network

We again model the system as a CTMC. Let the number
of SUs in the active state, at timet, be i and the number of
idle channels bej ; the network system state is represented by
the two-tuples = (i , j ). We can write the state space,S =
{s = (i , j ) |i ∈ [0,Ns ], j ∈ [0,Np ]}. The total number of states
is |S| = (Ns + 1) × (Np + 1). The corresponding distribution
parameters for active and idle periods for SUs areλs and µs ,
respectively. Therefore, the average time for the active and idle
periods for an SU areλ−1

s and µ−1
s , respectively.

When the PU turns active, the corresponding channel (li-
censed to the PU) is unavailable for use by any SU. However,
an SU in that band can look for and occupy any vacant channel
upon the return of the PU to its current channel. If any SU
generates data when there is no available channel, the data
traffic goes into a buffer associated with that SU (see Fig. 3).

Each SU buffers its data stream until it gains access to
the transmission channel in accordance with the FIFO rule
i.e., each SU should wait until all prior channel requests
are processed. Therefore, we can model the entire system of
buffers as a single virtual aggregate buffer,Q(·), where the
content of the aggregate buffer is the summation over the
content of all individual SU buffers (see Fig. 3). The aggregate
buffer depletion rate at any state,di, j depends on the number
of free channels and active SUs. The buffer depletion rate at
any state and time is:

di, j = jcp − ics . (12)

In Eq. (12), we assume that SUs can use more than one channel
at a time to use all the available capacity upon their access.
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(i,j)
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j p

(Ns-i+1) s i s

Fig. 4: The state transition diagram in steady state for the
CTMC model.

This can be done by carrier aggregation as discussed in [42]–
[44]. For the extension of our system model and analysis to the
case where aggregation and fragmentation of spectrum bands
is not allowed, we can generalize the buffer depletion rate at
a given state as,ds = f (1)(s)cp − f (2)(s)cs , where, f (1)(·)
and f (2)(·) are functions of the network states = (i , j ). For
eg., the special case of no channel aggregation can be studied
by assumingf (1)(s) = min(i , j ) and f (2)(s) = i . Throughout
this paper, we use Eq. (12) for our analysis. The study of
the generalized buffer depletion rate when there is no channel
fragmentation or aggregation is left for future work.

Let Pi, j (q, t), i ∈ [0,Ns ], j ∈ [0,Np ] and t,q ≥ 0, be the
CDF of the probability that the total content of all SU buffers
does not exceedq at the timet when i SUs are in active and
j PUs are in idle states i.e.,Pi, j (q, t) = Pr{Q(t) < q and s =
(i , j )}. As long as the buffer is not empty, the aggregate buffer
is depleted at the instantaneous ratedi, j . Once all buffers are
empty, they stay in the empty state as long as the combined
data rate of all SUs is less than the available channel capacity,
that is ics < jcp . The CDF of aggregate buffer occupancy,
P(·), can be expressed as a summation ofPi, j ’s:

P(q, t) =
∑

i≤Ns, j≤Np

Pi, j (q, t) (13)

We assume an infinite buffer for all SUs. For such a system,
the stability condition is satisfied if the long-time average
arrival rate,Din, for the entire secondary network is less than
the long-time average service rate,Dout. It is easy to show
that the network average arrival rate isDin = Nscs

µs

λs+µs
, and

the average service rate isDout = Npcp
λp

λp+µp
. We define the

traffic load factor,ρ = Din
Dout

. The system is said to be stable if
the traffic load factor,ρ is less than unity.

The assumption of the CTMC system model allows us to
characterize the aggregate buffer occupancy probability dis-
tribution using Kolmogorov’s backward equations. Since the
periods of idle and active states for the SUs are exponentially
distributed, the probability that for the next∆t time slot, an SU
turns ON or OFF can be written as (Ns − i )µs∆t +O(∆t2) and
iλs∆t +O(∆t2), respectively, whereO(·) is the Big-O asymp-
totic notation. Similarly, for the PUs, these probabilities are
j µp∆t +O(∆t2) and (Np − j )λp∆t +O(∆t2), respectively. The
probability of any compound event isO(∆t2). The probability
that there is no change in the states of the PU or SU is given
by 1 − ((Ns − i )µs + iλs + j µp + (Np − j )λp )∆t + O(∆t2).
Assuming∆t is infinitesimally small, we can ignore higher

order terms,O(∆t2), and use CTMC to derive the following
partial differential equations [9].

∂Pi, j

∂t
− di, j

∂Pi, j

∂q
= (Ns − i + 1)µsPi−1, j+ (14)

(i + 1)λsPi+1, j + ( j + 1)µpPi, j+1 + (Np − j + 1)λpPi, j−1

−((Ns − i )µs + iλs ) + j µp + (Np − j )λp )Pi, j

wherePi, j = Pi, j (q, t). At steady state, the probability distri-
bution does not change with respect to time (∂Pi, j/∂t → 0).
Therefore, the first LHS term in Eq. (14) will vanish at
steady state, and hereafter, we can drop the time indext, for
probability functions. The state transition diagram is shown in
Fig. 4. Using matrix notation, we can reformulate Eq. (14) as:

A
d
dq

P(q) = BP(q) (15)

where vector P(·) = [P0,0(·), · · · ,Pi, j (·), · · · ,PNs,Np
(·)]

′

,
and its dimension is the same as the state-space dimension,
(Ns + 1) × (Np + 1). The matrixA = diag{di, j }s=(i, j )∈S is the
depletion diagonal matrix, anddi, j ’s are given in Eq. (12),
and B = [bs1→s2]s1,s2∈S denotes the transition rate matrix of
the CTMC model where non-zero transition rates from state
s1 = (i , j ) to s2 = (i ′, j ′), bs1→s2 can be derived based on the
rate transition diagram in Fig. 4.

Let z be an eigenvalue ofA−1B and φ be the associated
right eigenvector i.e.,zAφ = Bφ. Since the primary and
the secondary network are independent of each other,φ, the
system eigenvector, has Kronecker decomposition of the form
φs ⊗ φp , where ⊗ denotes the Kronecker-product, andφs

and φp are eigenvectors of the corresponding independent
secondary and primary networks and can be explicitly found
using generating polynomials [9]. In general, the transition
rate matrix can be written as,B = Bs ⊕Bp , whereBs andBp

are transition rate matrix of the corresponding independent
secondary and primary networks, respectively and⊕ denotes
the Kronecker sum [9]. Although we assume homogeneous
SUs and PUs in this paper, the analysis presented here can
easily be extended to non-homogenous networks as well by
categorizing SUs toKs and PUs toKp different classes. In
such cases the transition rate matrix for SUs and PUs can
be substituted withBs = ⊕

Ks

k=1 B(k )
s and Bp = ⊕

Kp

k=1B(k )
p ,

where B(k )
s or B(k )

p denote the transition rate matrix for a
given class of SUs or PUs, respectively. For example, a class-
based approach has been used to analyze network capacity and
resource management of wireless home networks in [14].

The bounded solution of the stable system characterized by
the equation in Eq. (15) can be expressed as:

P(q) = a0φ0 +
∑

zl<0

ale
zlqφl (16)

in which zl ’s and φl ’s are eigenvalues and eigenvectors of
matrix A−1B. The corresponding coefficient is denoted by
al . To uniquely determine the solution of Eq. (15), initial
conditions should be specified. Ifdi, j ≥ 0 then the depletion
rate in aggregate buffer content is positive and therefore,at
steady state, the buffer should be empty. In other words,
the conditional probability of empty buffer content, given
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s = (i , j ) is Pr{q = 0|s = (i , j )} = 1. Therefore, the stationary
probability is:

Pi, j (0) = πsu
i π

pu
j
, di, j ≥ 0 (17)

whereπsu
i

is the probabilityi out of Ns SUs are simultaneously
in the active state andπpu

j
is the probability thatj out of Np

channels are free and can be calculated as:

πsu
i =

(

Ns

i

) λis µ
Ns−i
s

(λs + µs )Ns
, π

pu
j
=

(

Np

j

) µ
j
pλ

Np− j

p

(λp + µp )Np
(18)

where
(

Ns

i

)

is the total number ofi-combinations ofNs

objects. On the other hand, if the data rate of the active SUs
exceeds the available channel capacity, under steady state, the
buffer content increases and the buffer cannot stay empty i.e.,

Pi, j (0) = 0, di, j < 0. (19)

The other boundary condition that can be used to determine
the solution to Eq. (15) is infinitely large buffer size (q = ∞)
where, there is no constraint on the buffer content. In this
case, the only non-zero term in Eq. (16) isP(∞) = a0φ0. For
this asymptotic case,Pi, j (∞)’s can easily be determined as,
Pi, j (∞) = πsu

i
π

pu
j

. Therefore, the total number of unknown
equals the number of equations in Eq. (17) and (19), which
will enable us to uniquely determine coefficients,al ’s.

Solving Eq. (16), the aggregate buffer occupancy CDF can
be found from Eq. (13) and expressed as,P(q) = 1−

∑

l a
′

l
ezlq ,

wherea
′

l
= −al (1 · φl ), 1 denotes the unit vector and· is the

inner product operator.
Result 2.2:The aggregate buffer overflow probability is a

weighted summation of exponentials for different systems and
can be expressed as:

Pr{Q > q} =
∑

l

a
′

l e
zlq (20)

Eq. (20) shows that the dominant decay rates,θ∗, can be
determined using the system eigenvalues as:

θ∗ = −max
l
{zl : zl < 0} (21)

Formulation in Eq. (20) is one of the main contributions of
this paper and gives the closed-form expression for the pdf of
the secondary network buffer occupancy.

III. A SYMPTOTIC ANALYSIS OF BUFFER OCCUPANCY

DISTRIBUTION

In this section, we provide some insight into the asymptotic
behavior of the secondary network buffer occupancy and
analyze the tail of distribution.

Result 3.1:The buffer occupancy distribution is light-tailed2

if the channel busy period distribution is light-tailed.
This can be seen by using the following argument. For the

secondary network, we consider the worst case scenario when
all SUs are always active by lettingλs → 0. The network
buffer overflow probability for any other type of SU activity
is smaller for any buffer content value,q.

2A random variable,X , is light-tailed if there is someθ > 0 such that
limx→∞ eθxPr{X > x } = 0, and if there is no suchθ, it is called heavy-
tailed random variable.
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Q
>

q
}

Simulation
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Fig. 5: A comparison of simulation and analytic results, for5
SUs and 3PUs. Activities are Poisson distributed.

For a system with the same busy state distribution, the
probability that the channel is free for a longer time, is greater
for the system with a heavy tailed distribution (THT

f ) for
the free periods compared to a system with a light tailed
distribution (TLT

f ) for the free periods. Therefore, the system
with THT

f can transmit more often and has less content in the
buffer compared to the system withTLT

f . That is, when the
means are the same:

Pr{Q > q,THT
f } ≤ Pr{Q > q,TLT

f } (22)

Based on the definition, for any light-tailed free period distri-
bution,TLT

f , we have:

Pr{TLT
f > t} ≤ e−θf t , θf > 0. (23)

For any light-tailed busy period distribution, we can also find
an exponential distribution which satisfies:

Pr{TLT
b > t} ≤ e−θbt , θb > 0. (24)

Therefore, from Eq. (22), (23) and (24), for any queue system
with light-tailed busy period distribution and a given free
period distribution, there is a queue system with exponentially
distributed busy and free periods such that the former queue
system outperforms the latter system. Then, we have:

Pr{Q > q,TLT
b } ≤ Pr

{

Q > q,Tb ∝ exp(θb),Tf ∝ exp(θf )
}

(25)

We already showed in Sec. II-C that for any system with free
and busy periods distributed exponentially, the network buffer
overflow probability is a summation of exponentials which is
a light-tailed distribution. Substituting Eq. (20) in Eq. (25), we
have the following inequality:

lim
q→∞

eθqPr{Q > q,TLT
b } ≤ lim

q→∞
eθq
∑

l

a
′

l e
zlq (26)

The RHS expression in Eq. (26) is zero for anyθ < θ∗

(where θ∗ is given in Eq. (21)), which implies thatthe
buffer occupancy has a light-tailed distribution as long asthe
channel busy state is light-tailed distributed.
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IV. EFFECTIVE BANDWIDTH

In general, finding closed-form expression for the effective
bandwidth in Eq. (5) is difficult and the overflow probabilityin
Eq. (20) should be numerically evaluated. However, in some
special cases good approximations can be made.

A. Effective Bandwidth for Single Channel and Multiple SUs

In the following, we consider the single channel case when
the channel is always available (µp → 0). The dominant decay
power in this case can be calculated analytically and is:

θ∗Ns
=

Ns (Nscs µs − cp (λs + µs ))

cp (Nscs − cp )
(27)

This can be seen from the following argument. Any eigen-
value z and eigenvectorφ = (φ1, · · · , φNs

) for the system
described in Sec. II should satisfy the following equation [8]:

z(ics − cp )φi = µs (Ns +1− i )φi−1− ((N− i )µs + iλs )φi (28)

+(i + 1)λsφi+1

The eigenvector generating power series can be defined as
φ(x) =

∑

i φi x
i . Eq. (28) can be written in differential form,

φ(x)(zcp−Ns µs+Nµsx) = φ
′

(x)(µsx2+(zcs+λs−µs )x−λs ).
(29)

The solution to the differential Eq. (29) can be expressed as:

φ(x) = (x − x1)k (x − x2)Ns−k (30)

wherek ≤ Ns is an integer, and

x1,2 =
−(csz + λs − µs ) ±

√

(csz + λs − µs )2 + 4µsλs
2µs

.

(31)
The dominant decay power is the solution tozcp − Ns µs +
Ns µsx1 = 0, which results in the following equation:

z(4c2
p−4Nscpcs )+(4N2

s cs µs−4Nscpλs−4Nscp µs ) = 0 (32)

The solution to the Eq. (32) gives the smallest eigenvalue.
From this, the dominant decay power can be found isz =
Ns (Nscs µs−cp (λs+µs ))

cp (Nscs−cp ) . The probability distribution in Eq. (20)
can be reformulated as:

Pr{Q > q} = aθ∗ e−θ
∗q +

∑

zl,−θ∗

a
′

l e
zlq (33)

where aθ∗ is the coefficient corresponding to the dominant
decay rate. To have a closed-form expression for the effective
bandwidth, we can approximate this coefficient asaθ∗ ≈ 1
[45]. Whenq≫ 1, we can also ignore the RHS summation in
Eq. (33). Using Eq. (4), for the QoS constraintǫ and buffer
size q, the effective bandwidth can be approximated as:

a∗
Ns

(ǫ ) ≈
Nscp (µs + λs ) − c2

p log ǫ/q

Ns (Ns µs − cp log ǫ/q)
(34)

Eq. (34) shows that the effective bandwidth isa∗
Ns
= cp

µs+λs

Ns µs

whenq→ ∞, which is the maximum data generation rate for
the stable system when the load factor is unity,ρ = 1.

0 2 4 6 8 10
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Buffer size

L
o
g
 P

(Q
>

q
)/

q

Analytical

Simulation

Asymptotic

(a)

0 1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
ff

ec
ti

v
e 

ca
p

ac
it

y

QoS exponent

Analytical

Asymptotic

Approximation in [4]

(b)

Fig. 6: Single SU, single PU network,a) Decay rate for buffer
occupancy probability,b) Numerical evaluation of Eq. (11) for
overflow probability fixed atǫ = 10−3.

B. Effective Bandwidth for Single SU and Multiple Channel

This case is the dual of the problem considered in Sec.
IV-A. When there areNp channels and the SU is always active
(λs → 0), using the same approach as Sec. IV-A, the dominant
decay rate is:

θ∗Np
=

Np (Npcpλp − cs (λp + µp ))

cs (Npcp − cs )
(35)

This can be seen from the following argument. Using the
same method as Sec. IV-A, the generating power series can
be written in the form of Eq. (30), wherex1,2 are

(cpz + λs − µs ) ∓
√

(cpz + λp − µp )2 + 4µpλp

2λs
. (36)

In this case, the dominant decay power is the solution tozcs −
Npλp + Npλpx1 = 0. By substitutionx1, the dominant decay
power can be found as:

z =
Np (Npcpλp − cs (λp + µp ))

cs (Npcp − cs )
(37)

For Np = 1, the decay rate can be simplified toθ∗
Np=1 =

λp

cs
−

µp

cp−cs
, which was also calculated in Eq. (10). Using the

Eq. (33), the effective bandwidth can be approximated as:

a∗
Np

(ǫ ) ≈
Np

2
(cp + (λp + µp )q/ log ǫ ) (38)

+
Np

2

√

(cp + (λp + µp )q/ log ǫ )2 − 4cpλpq/ log ǫ )

It can be easily verified that for large buffer size (q→ ∞) the
effective bandwidth will be:

a∗
Np
→ Npcp

λp

λp + µP
(39)

Note that the asymptotic effective bandwidth for the network
with single SU and single PU with the channel capacityc

′

p =

Npcp is equal to Eq. (39); however, the decay rate isNp times
slower and using Eq. (35), it can be expressed as

θ∗Np

′

=

Npcpλp − cs (λp + µp )

cs (Npcp − cs )
=

1
Np

θ∗Np
(40)

This is also the case for the decay rate of a network comprising
a single PU and a single SU with a generation ratec

′

s = Nscs ,
say θ∗

Ns

′

as we haveθ∗
Ns

′

=
1
Ns
θ∗
Ns

.
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Fig. 7: The dominant decay rate,logP(Q>q)
q

vs Buffer size for
the network consisting of a single SU and two PUs for,a)
p11 = 0.4 andp01 = 0.6, b) p11 = 0.8 andp01 = 0.2.

C. General Case Ns ,Np ≥ 1

For the general case, finding a closed-form expression
for the effective bandwidth is very difficult. However, the
dominant decay rate is a root of equation [9],

Ns

√

Ps (θ) + Np

√

Pp (θ) − Np (cpθ + µp + λp ) (41)

−Ns (−csθ + µs + λs ) = 0,

wherePp (θ) = (cpθ + µp − λp )2 + 4µpλp and alsoPs (θ) =
(csθ − µs + λs )2 + 4µsλs . After finding θ∗, we use the same
approximation as Section IV-A and IV-B. Therefore, Eq. (33)
and (41) implicitly express the relationship between the effec-
tive bandwidth and the overflow probability, which must be
evaluated numerically. For the special case of large buffersize
(q→ ∞), the maximum sustainable rate happens whenρ = 1.
Then the effective bandwidth isa∗

q→∞ =
Npcpλp

Ns µs

λs+µs

λp+µp
.

V. NUMERICAL RESULTS

The simulation parameters are identified in Table II. Fig. 5
shows that the experimental and theoretical values for buffer
overflow probability Pr{Q > q}, match.

Fig. 6a shows the dominant decay rate of the buffer overflow
probability single SU single PU network analyzed in Sec. II-B
for fixed packet generation rate (ρ = 0.7). It demonstrates that
log Pr(Q > q)/q converges to−θ∗ as the buffer size increases.
It can be seen that the approximation of the asymptotic decay
in Eq. (35) is true even for moderate buffer sizes.

The plot in Fig. 6b shows the effective capacity of the
stable system Eq. (3) versus the QoS exponent,−

logǫ
q

, which
is similar to the typical effective capacity plot in Fig. 2b.In

TABLE II: Simulation parameters

Fig. 5 Fig. 6 Fig. 7a / 7b Fig. 8a Fig. 8b Fig. 9a
Ns 5 1 1 3 1 5
Np 3 1 2 1 5 3
λs 2 - - 1.2 - 1.2
µs 10 - - 0.5 - 0.5
λp 6.7 0.6 0.4 / 0.8 - 0.7 0.7
µp 4.7 0.3 0.6 / 0.2 - 1 1
cs 1 0.4 0.3 / 1.4 - - -
cp 2.5 1 1 1.3 0.7 0.8
ǫ - 10−3 - 10−3 10−3 -
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Fig. 8: Effective bandwidth for systems with,a) single chan-
nel, multiple SUs (approximation error < 1% forq > 10),
b) single SU, multiple PUs (approximation error < 2% for
q > 10).

[4], the system of a single (always ON) SU with two-state
channels is modeled as Markov chain with transition proba-
bilities, p11 = Pr[free→ free] and p10 = Pr[free→ busy].
For the sake of comparison, we study the special case of
p11 = p01 =

λp

µp+λp
and λs → ∞ to compare our results with

the result in [4]. In Fig. 6b, transition probabilities for the
Markov chain arep11 = 0.65 andp10 = 0.35. In [4], using the
approximation Pr(Q > q) ≈ e−θ

∗q , the asymptotic effective
bandwidth has been provided. From Fig. 6b, it can be seen
that the approximation provided in [4] follows the analytical
results however, the approximation error increases as the QoS
exponent increases.

The dominant decay rate for the single-SU network with
different simulation setups are shown in Fig 7. Fig. 7a shows
the dominant decay rate for the system of two PUs with
active and idle ratesλp = 0.4 and µp = 0.6, respectively. To
compare results with the study in [4], we setλs → ∞ (always
active SU) and set the transition probabilitiesp11 = 0.4 and
p01 = 0.6. Fig. 7b shows the decay rate for the network with
transition probabilitiesp11 = 0.8 andp01 = 0.2. Fig. 7 verifies
our results and shows that our analytical formulations perfectly
fit the bounds derived in [4].

In Fig. 8a, the effective bandwidth available to each SU
for the system of always available single channel with three
SUs is plotted. As it can be seen from Fig. 8a, the available
effective bandwidth for the zero-size buffer isa∗

q=0 = 0.43
which is the ratio of the channel capacity to the number of
SUs,cp/Ns . However, in Fig. 8b, for the system of multiple
PUs where channels alternate between free and busy states,
the zero-size buffer effective bandwidth is zero, implyingthat
to have a constant data rate, a non-zero buffer is necessary.
Fig. 8b shows the effective bandwidth for the network of a
single SU with five PUs. Fig. 8 shows that effective bandwidth
formulation in Eq. (27) and (38) are very good approximations
(less than 1% error for large buffer sizes).

The effective bandwidth for a general network consisting of
multiple SUs and multiple PUs (5 SUs and 3 PUs) is shown in
Fig. 9a which depicts the impact of increasing the QoS con-
straintǫ on the effective bandwidth forǫ = 10−i , i = {1,2,3,4}.
As we expect, the more strict QoS constraint, the lower
effective bandwidth for the same buffer size. However, as it
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Fig. 9: The impact of system parameters on the effective band-
width for, a) the system of multiple SUs, multiple channels
for different ǫ value,b) given QoS constraintǫ = 10−3.

can be seen, all curves converge to the asymptotic effective
bandwidth value for large buffer sizes.

Fig. 9b shows effective bandwidth for different buffer sizes
(ǫ = 10−3, cp = 1). Table III shows the simulation parameters.
In System II, the average channel free period (T̄f = 1/µp) is
doubled, and as we expect, the effective bandwidth for SUs
increases, however, in System III, where the average channel
busy period (̄Tb = 1/µp) is doubled, the effective bandwidth
decreases. The opposite argument holds for the activity periods
of SUs i.e., in the System IV where the average SU active
time is doubled, the effective bandwidth decreases while,
doubling the average SU idle time in System V, increases
the effective bandwidth. System VI and VII show the impact
of decreasing number of SUs (Ns) and increasing number of
PUs (Np), respectively, on the effective bandwidth. Note rate
of convergence to the asymptotic values are different for the
different systems. For example, the the fastest System (System
II) reaches 95% of its asymptotic value for buffer sizeq = 5.7
while, the slowest System (System III) reaches that value at
buffer size (q = 11.8).

VI. CONCLUSION AND FUTURE WORK

We analyzed the effective bandwidth for a general CRN
consisting of multiple PUs and multiple SUs, by defining a
stochastic fluid flow model for the SU buffer occupancy and
a CTMC to capture the dynamic nature of the PU and SU
activities. We obtained the first ever closed-form expression
for the effective bandwidth for general DSA networks. We
also provided the asymptotic tail distribution analysis for this
type of network, where we showed the buffer occupancy is
a light-tailed distribution if the busy period for channelsare
light-tail distributed. This work can be extended to cases where
fragmentation and aggregation are not supported as well as
different distribution of PU traffic developed recently [32].

TABLE III: Simulation parameters for Fig. 9b

System I II III IV V VI VII
Ns 7 7 7 7 7 6 7
Np 3 3 3 3 3 3 2
λs 10 10 10 5 10 10 10
µs 14 14 14 14 7 14 14
λp 6 6 3 6 6 6 6
µp 4 2 4 4 4 4 4
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