Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/0022-3727/49/32/325304)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 155.246.181.28
This content was downloaded on 22/07/2016 at 20:07

Please note that terms and conditions apply.
Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates

Kyle Godin1, Kyungnam Kang1, Shichen Fu and Eui-Hyeok Yang

Department of Mechanical Engineering, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA

E-mail: eyang@stevens.edu

Received 21 March 2016, revised 9 June 2016
Accepted for publication 22 June 2016
Published 21 July 2016

Abstract

We report a surface energy-controlled low-pressure chemical vapor deposition growth of WS\textsubscript{2} monolayers on SiO\textsubscript{2} using pre-growth oxygen plasma treatment of substrates, facilitating increased monolayer surface coverage and patterned growth without lithography. Oxygen plasma treatment of the substrate caused an increase in the average domain size of WS\textsubscript{2} monolayers by 78\% ± 2\% while having a slight reduction in nucleation density, which translates to increased monolayer surface coverage. This substrate effect on growth was exploited to grow patterned WS\textsubscript{2} monolayers by patterned plasma treatment on patterned substrates and by patterned source material with resolutions less than 10 \textmu m. Contact angle-based surface energy measurements revealed a dramatic increase in polar surface energy. A growth model was proposed with lowered activation energies for growth and increased surface diffusion length consistent with the range of results observed. WS\textsubscript{2} samples grown with and without oxygen plasma were similar high quality monolayers verified through transmission electron microscopy, selected area electron diffraction, atomic force microscopy, Raman, and photoluminescence measurements. This technique enables the production of large-grain size, patterned WS\textsubscript{2} without a post-growth lithography process, thereby providing clean surfaces for device applications.

Keywords: TMD, WS\textsubscript{2}, tungsten disulfide, synthesis, chemical vapor deposition, patterning

Online supplementary data available from stacks.iop.org/JPhysD/49/325304/mmedia

(Some figures may appear in colour only in the online journal)
quality of devices made from these materials can be compromised from contamination [7–13]. Direct patterning through growth without a post-lithography process thus would allow for a reduction of potential contaminants. However, previous reports on patterned growth of TMDs focus on multilayer TMDs [14, 15] and graphene [16–20].

Research on CVD growth of WS$_2$ has focused on controlling growth through choice of precursor, controlling flow rates, growth pressures, growth temperatures, or ramp rates [2, 21–25]. However, growth of monolayer van der Waals materials is closely linked to substrate interactions including substrate surface energy, a consequence of the high surface area to volume ratio of these materials. A pre-growth oxygen plasma treatment of the growth substrate was recently shown to increase average grain size with decreased nucleation density for CVD growth of monolayer MoS$_2$ with submicron grains [26]. In addition, oxygen plasma treatment of substrates improved another van-der-Waals growth, the atomic-layer-deposition of alumina on MoS$_2$ substrates [27].

Though chip-scale growth of MoS$_2$ was demonstrated using low-pressure chemical vapor deposition (LPCVD) as early as 2013 [28–30] and later with WSe$_2$ [31], chip-scale monolayer WS$_2$ growth has only recently been demonstrated on Au substrates [32, 33] and by MOCVD on fused silica and SiO$_2$ substrates [29]. In comparison, MoS$_2$ semiconducting devices have been further developed (including signal mixers, memory devices, logic devices, and photonic devices) [34–39], due to the relative difficulty of growth and exfoliation of WS$_2$. However, WS$_2$ has value over other TMDs for certain applications. WS$_2$ has large spin-orbit band splitting for spintronics applications (426 meV for WS$_2$, 148 meV for MoS$_2$, though exceeded by WSe$_2$ at 456 meV) [40]. The mobility is theoretically higher than other semiconducting TMDs (MoS$_2$ is higher in the experimental literature) [41]. Also, though the broadband sunlight absorption by WS$_2$ is less than other TMDs [42], it has been particularly investigated for photonics due to its high PL efficiency and high exciton binding energy [43–47] including use as a gain medium for lasing [48], chosen over MoS$_2$ or WSe$_2$ for its higher quantum efficiency.

Here we report the effect of pre-growth oxygen plasma treatment on the LPCVD growth of WS$_2$ and exploit that effect for patterned growth of monolayer WS$_2$. We show that oxygen plasma pretreatment of substrates dramatically increases the average crystal grain size of monolayer WS$_2$ CVD growth and encourages monolayer WS$_2$ surface coverage, while slightly reducing the nucleation density. We further demonstrate that control of growth through surface treatment lends itself to directly patterned growth of WS$_2$. We show that increased monolayer growth from WS$_2$ also enables patterned growth of WS$_2$ through patterning the WO$_3$ source material or the growth substrate through etching. We furthermore demonstrate multi millimeter scale growth of predominantly monolayer WS$_2$ on an oxidized silicon substrate using the increased surface energy from a pre-growth oxygen plasma treatment.

Results and discussion

Growth of WS$_2$ monolayers was performed in an MTI 1200X one-zone split-top furnace with a 3 inch quartz tube, run with a 36 mTorr base pressure and a few hundred mTorr operating pressure when fed with Ar and H$_2$ gas and S vapor evaporated from molten S (illustrated in figure 1(A)). The maximum temperature was 900 °C but growth interruption experiments show that growth occurred during the ramping process from 815 °C to 900 °C and after reaching 900 °C. The samples were unloaded when the furnace cooled to under 40 °C. The total time including cooling, from loading to unloading the samples, was 3 h. Growth substrates were 1 cm × 1 cm chips with

![Figure 1. CVD growth setup and growth of WS$_2$ with or without O$_2$ plasma.](image-url)
90 nm SiO$_2$ on Si (‘growth chips’) and were placed face to face with other chips (‘source chips’) which were covered with 5 nm of evaporated WO$_3$. For oxygen plasma assisted growth, the growth substrates were exposed to plasma directly before growth (details in Methods). After growth, the WO$_3$ source substrate was covered with thick, nonuniform WS$_2$ (figure S1 (stacks.iop.org/JPhysD/49/325304/mmedia)) while the target substrate was covered in predominantly monolayer WS$_2$ (figures 1(B)–(E)).

Pre-growth oxygen plasma treatment was found to increase the crystal size of the monolayer WS$_2$ while causing a smaller, negative effect on the nucleation density. A representative run of WS$_2$ chips with and without oxygen plasma treatment grown simultaneously is shown in figures 1(B) and (C). The untreated substrate had a nucleation density of 940 ± 15 crystals mm$^{-2}$ and an average WS$_2$ crystal size of 56 ± 1 µm2. With plasma treatment, the nucleation density decreased by 8% to 871 ± 11 crystals mm$^{-2}$ while the average WS$_2$ crystal size increased by 78% to 101 ± 2 µm2. By optimizing the growth, a continuous WS$_2$ film which is predominantly polycrystalline monolayer (up to multi-mm2 in size) can be obtained (figure 1(D)). Additional characterization of the large area growth appears in figure S2. The percentage increase in domain size between treated and untreated samples is given as a representative example as it is sensitive to the growth recipe, an order of magnitude difference being possible. For example, the patterned growth in figure 1(E) has separated monolayer growth in the plasma treated region.
and almost no growth in the untreated region. To produce the patterned growth in figure 1(E), (a) contact shadow mask was used during the plasma treatment process; the mask was removed before growth leaving only the surface energy difference to do the patterning. The growth in figure 1(E) was run with process parameters optimized for selectivity between the plasma treated and untreated regions, while avoiding multilayer growth in the plasma treated regions. Polished Si and rolled Cu shadow masks both resulted in well-defined patterns, suggesting that one can use any mask which conforms to the substrate and resists the oxygen plasma treatment process. Polymer masks redeposited on the exposed regions during the plasma treatment and became nucleation sites favouring multilayer WS₂ growth.

Grain size measurements on the grown WS₂ monolayers were performed by exposing the sample in ambient conditions to oxidize the crystal at the grain boundaries over an approximately 7 d period (figure S3), then taking optical microscope images and analysing using the Particle Analysis plugin of ImageJ [49]. In order to measure average grain sizes, optical images of the same region were taken before and after oxidizing the sample with the total area of monolayer WS₂ taken from the un-etched samples and the number of grains counted using the second image when the grain boundaries were revealed by oxidation. The correspondence of the oxidation with the grain boundaries has been established by several reports [22, 23, 50], which also showed that the grain boundaries can also be revealed by heating the sample on a hot plate in air in 20 min [22] or by UV treatment in humid atmospheres [50].

To elucidate the effect of oxygen plasma on growth and to inform the growth model, we performed surface energy measurements of plasma treated samples. The surface energy was found by performing contact angle measurements and fitting to the Owens–Wendt model which divides the surface energy into polar and dispersive components [51]. Toluene was used as a purely dispersive liquid and water as a strongly polar liquid. After plasma treatment for 1–6 min with powers 30–90W, the surface energy of the untreated state jumped from a surface energy of 53.2 ± 0.8 mJ m⁻² (water contact angles 48 ± 1) into the range 71–73 mJ m⁻² (water contact angles 1–13°) (figures 2(A) and (B)). While surface energy increased 74% compared to untreated substrates, the variation in surface energy was only 3% for the experimental parameters 1–6 min and 30–90W. Higher powers and longer times (5 min, 100W) resulted in reduced grain size and increased percentage of thick growth of WS₂ (figure S4). The small variation in surface energy despite a noticeable trend in water contact angle (figures 2(C) and (D) is due to the contact angle appearing in a cosine. Though difficult to measure contact angles less than a few degrees using the sessile drop method, the error on the surface energy is only ±0.04 mJ m⁻² for a contact angle range of 0.1–2°, so errors of measurement on low angles do not affect the conclusions. Figure 2(E) shows how the toluene contact angle and thus the dispersive surface energy does not depend on the plasma power, while figure 2(F) shows how polar component of the surface energy increasing monotonically with plasma power.

The existence of silanol groups on treated surfaces has been experimentally verified through pH dependent contact angle [52] and XPS measurements [53]. Polar-dispersive contact angle measurements on H₂O plasma treated mica showed the same polar-only trend as the experiments presented here and correlated the result with XPS measurements of OH groups [53]. Several experiments and simulations correlate contact angle with surface silanol density [54, 55]. Though several studies support contamination removal as the mechanism for contact angle reduction without reference to surface bonds or silanol groups [56, 57], it is unclear how pure contamination removal would result in a polar surface and be as rapid as we observed. Increased roughness could reduce contact angle, based on the Wenzel model, or could

Figure 3. Growth kinetics of WS₂ with oxygen plasma surface treatment. Growth on an untreated, low energy substrate is shown on the left (A) and on a plasma treated substrate on the right (B). The vertical arrows serve to illustrate the higher energy of the surface. In the vapor phase are shown H₂ gas (white), S vapor (yellow) and various W oxides (blue and red). Drawn are qualitative representations of the longer surface diffusion length λ₂ and lower activation energy E₂ than the plasma treated substrate.
provide more surface area for silanol group attachment [58].
In our experiments, surface roughness measurements showed an RMS roughness less than our tool’s measurement limit of 0.5 nm for both untreated and treated samples, in agreement with others’ measurements of less than 1 nm roughness after 20 min in a high power system [59]. The effect cannot be entirely excluded, but it would be based on sub-nm roughness. The increase of polar surface energy without a change in surface roughness is consistent with the formation of silanol groups on the SiO2 surface. The largest increase in surface energy, from 53 to 72 mJ m−2, was rapid, with an additional 3% increase to 73.5 mJ m−2 over several minutes or with higher powers. In the first minute adsorbed water and organic contaminants are likely removed and replaced with silanol groups. Simple contaminant removal is not expected to be so rapid, resulting in a polar surface. The additional effect over several minutes cannot be explained by the same short term desorption mechanism, but could be explained by etching of organics or surface reconstruction.

Increased grain size was observed for samples that had rested for up to 30 min before loading, but the best results were obtained from those loaded as quickly as possible (3–5 min) and ramped rapidly to the growth temperature (18 deg min−1). Rapid heating above this rate caused poor growth, attributed to overheating the substrates due to the furnace design causing radiative heat transfer from the coils.

The effect of plasma pretreatment on the growth mechanism is illustrated in figure 3. In order to explain the range of results observed we deduce that both the activation energies for nucleation and growth are reduced and the surface diffusion length of the reaction product is increased. This means that the growth is highly dependent on the local supersaturation which explains the wide range of results we observed. Figure 3(A) shows growth kinetics for an untreated surface and figure 3(B) shows a treated surface. Illustrated in the vapor phase are various W oxides, S vapor, and H2 gas which participate in the reaction (Ar carrier not shown and concentrations taken as the same in figures 3(A) and (B)). Pure W is not shown in the vapor phase as it is not volatile at the growth temperature, though the W suboxides are known to be volatile at those temperatures. H2 or H2O react to reduce the W oxides as part of the reaction; in our experiments there is no WS2 growth from WO3 in a H2 and H2O free atmosphere. The growing crystal forms bonds between the existing crystal and the substrate which both contribute to the interfacial energy and thus the activation energy. The increased interfacial energy should result in a decreased activation energy for both lateral crystal growth and nucleation, however we observed decreased nucleation density, which can be explained by deconstructing the free energy driving nucleation (Δg) into the supersaturation σ and interfacial energy α. The nucleation rate is proportional to the exponential of the free energy [60],

\[
\text{Nucleation rate} \propto e^{-\Delta g/kT}
\]

where Δg is the free energy, k is the Boltzmann constant, and T is the temperature. Here, the free energy is related to the supersaturation and interfacial energy by

\[
-\frac{\Delta g}{kT} \propto -\frac{\alpha^3}{\sigma^2}
\]

where σ is supersaturation and α is interfacial energy. Thus, a decrease in interfacial energy has a strong effect on both the crystal growth rate (and ultimate size) and on the nucleation density. We conclude that a second effect must come into play to reduce the nucleation density. An increase in surface diffusion length is a plausible explanation. The high energy of the surface lowers energy barriers for surface diffusion, increasing the surface diffusion length and consequently decreasing the nucleation density. When reactants arrive at the growing crystal interface they are more easily incorporated due to the lower surface activation energies.
The supersaturation, which correlates to local reactant concentrations, is a parameter which is highly local and drives the relative importance of the surface diffusion length and the activation energy. This interplay between the two effects results in a high variability between samples which have an increase in grain size and a lower nucleation density and other samples which show both a high increase in nucleation density and a high increase in grain size, as is seen in some of the patterned growth results exhibited in this paper.

Controlling growth by substrate preparation lends itself to patterned growth of monolayer WS₂ by promoting growth only in certain areas. Here we demonstrate directly grown, patterned WS₂ through three methods (figure 4). In the first method, patterned growth resulted from directly controlling the local surface energy of the substrate by exposing the growth substrate to oxygen plasma pretreatment through a shadow mask. Shadow masks were made from both polished Si and rolled Cu foils. In this case, the chip carrying the WO₃ source material was not treated or modified. The result was already shown in figure 1(E) using a triangular mask made from polished Si; figure 5(A) shows the result from a square Si mask and figure 5(B) shows the result at the edge of a region patterned using a Cu foil disk. The differences between figures 5(A) and (B) stem not from the mask but from different growth process parameters. Figure 5(B) had higher sulfur concentration during growth. By selecting appropriate process parameters, either disconnected WS₂ monolayers can be grown (figures 1(E) and 5(A)) or connected, few-layer WS₂ can be grown (figure 5(B)). In our experiments, the mask material did not affect the growth results as long as the mask conformed well to the substrate (using polished or rolled masks without wrinkles), and could withstand the oxygen plasma treatment. In figures 5(A) and (B) the interface region is sharp, with a transition region smaller than 10 µm.

The addition of a pre-growth plasma treatment to the process increased the monolayer WS₂ coverage from partial coverage and separated triangular crystals to a continuous polycrystalline monolayer WS₂ film. The growth chip was patterned by ICP etching in CHF₃ plasma using a photore sist mask followed by resist stripping using acetone (55 nm deep in a 90 nm oxide). The growth chip was exposed to oxygen plasma before growth while the WO₃ source chip was not modified. Figure 5(C) is an optical image of the result, with continuous polycrystalline monolayer WS₂ films separated by regions devoid of WS₂ growth, confirmed by photoluminescence data (figure 5(D)). The grown monolayer WS₂ has a PL/Raman intensity ratio of 20 while P2 has a ratio of approximately 1. The decreased PL intensity is an indication that there is either no WS₂ or thick (>3 layer) WS₂ [2], and optical and SEM investigation shows there is no WS₂ in the etched trenches (P2). The existence of a Raman signal in P2 is attributed to the probe spot size being near the same size as the features, so signal is picked up from the neighboring monolayer WS₂.

Furthermore, oxygen plasma treatment caused nucleation and growth of monolayer WS₂ near the WO₃ source material, enabling patterned WS₂ growth from patterned WO₃. The WO₃ source material on the source substrate was patterned using lift-off and electron beam evaporation of 50 nm WO₃ from pellets. The growth substrate was unpatterned but was still subjected to the oxygen plasma treatment. Figure 5(E) depicts an optical image of the patterned WO₃ before growth and figure 5(F) shows the resulting WS₂ growth. While polycrystalline monolayer follows the pattern, thicker WS₂ appears near the center of the WO₃ source strip and at the intersections. In figure 5(F), The 50 µm WO₃ lines expanded to approximately 100 µm of monolayer WS₂ growth. Without oxygen plasma treatment, the growth process resulted in randomly distributed triangular monolayer crystals.

The growth method of contacting the substrates face to face was key to our patterning results, which we attribute to its role in limiting diffusion of W source material. WS₂ growth behaves fundamentally differently than Mo-based growth such as MoS₂ because both the WO₃ and suboxides (WO₂₉, WO₂₇₂, and WO₂ are all stable oxides) will...
not melt at the typical growth temperatures (below 900°C). In a non-reducing atmosphere WO$_3$ is completely stable at those temperatures. The suboxides are much more volatile than WO$_3$ at the growth temperatures, with volatility starting around 700 °C and sharply increasing around 900 °C [61]. Thus, growth of WS$_2$ and transport of the W source must occur by vapor phase transport of the suboxides. In the W system, both H and H$_2$O are known to dramatically reduce the temperature at which suboxides sublimate [26], which means those two have a large effect on CVD WS$_2$ growth. In our experiments, H gas is required to see any growth of WS$_2$ at 900 °C or below, and H$_2$O contamination actually improves growth to a point, though too much H$_2$O will damage grown WS$_2$. Because it does not melt, in the W system the amount of WO$_3$ source material does not affect the resulting crystal thickness as much. With patterned WS$_2$ growth, 50 nm WO$_3$ layers were typically used which is a larger amount of material than is needed to grow monolayers. As monolayer growth results from this thick layer, the sublimation of deep W source material is blocked by the top layers, with remaining material visible on the source substrate after growth using optical microscopy. Thus the reaction is limited by time and the amount of sulfur source which makes controlling the sulfur source during WS$_2$ growth critical.

Figure 6 characterizes WS$_2$ growth using oxygen plasma pretreated substrates. Figure 6(A) is a single area electron diffraction (SAED) pattern (TEM model FEI CM 20) from a WS$_2$ monolayer, grown on a plasma treated substrate and transferred to a lacey carbon grid. The sharp points in a six-fold pattern confirm the monolayer nature of the WS$_2$ growth and the high crystallinity. The lattice spacing is measured to be 2.74 ± 0.02 Å, in agreement with reported values [23]. Figure 6(B) is an aberration corrected HRTEM image (Jeol JEM2100F at Brookhaven National Lab) showing the hexagonal lattice of WS$_2$ with a hexagon side length of 1.85 ± 0.03 Å, in agreement with literature and with the expected value of 1.836 Å from the WS$_2$ crystallographic file 591003.cif from the Crystallographic Open Database [62]. For HRTEM, we observed both hexagonal lattices and triangular lattices (supplementary figure S5). Both types of lattices have been reported for confirmed monolayer WS$_2$ (hexagons [2, 23] and triangles [21–23]). Figure 6(C) is an AFM scan of a void surrounded by polycrystalline WS$_2$, with an optical image inset. The step height from the substrate to the WS$_2$ was 0.62 nm, averaged over many lines, supporting the conclusion that the WS$_2$ is monolayer and supporting our use of optical contrast to identify monolayers in many samples. Typical Raman and photoluminescence spectra from our WS$_2$ samples are shown in figures 6(D) and (E). Spectra were taken on a Horiba XploRA at an excitation wavelength of 532 nm and 16 μW. The tallest Raman peak is the 2LA peak at 352 nm which subsumes the E$_{2g}^1$ peak; the A$_{1g}$ peak is visible at 417 nm, which indicates the existence of WS$_2$ in agreement with the literature [63]. The PL spectrum was fit by a Gaussian–Lorentzian and appears at...
we have observed PL peak energies ranging from 621 nm to 641 nm (2.00 eV–1.94 eV) (figure S6) which agrees with the range observed by other research groups [2, 3]. Raman and PL spectra were taken in a single scan, with PL peak/Raman 2LA peak intensity ratios ranging from 80 to 150, indicating that the sample is monolayer [25]. Figure 6(F) is an SEM image of a connected growth region grown from oxygen plasma. SEM analysis reveals the existence of generally clear monolayer grain surfaces with bilayers appearing mostly at grain boundaries and more rarely over the interior of a grain. These bilayers appear at a similar density in samples grown with or without oxygen plasma (figure S7).

Taken together, the evidence suggests that the WS2 grown on plasma treated substrates is the same quality as on non-plasma treated substrates. If the WS2 resulting from oxygen plasma treatment had a higher defect density, the result would be seen in a decreased PL intensity and the possible appearance of the charged trion peak which is visible at room temperature [12]. Strain or substrate interactions could shift the Raman peaks, which was not seen in our samples. Possible inclusion of oxide defects into the crystal could not be detected using EDX due to the signal being obscured by the oxygen content of the SiO2 substrate.

Conclusions

We have demonstrated that oxygen plasma pretreatment of SiO2 substrates increases the average grain size and surface coverage for CVD growth of monolayer WS2. The proposed growth model was consistent with the range of observations required both lowered activation energy for growth and increased lateral diffusion on the substrate. The polar surface energy increase from oxygen plasma treatment was ascribed to desorption of water surface and organics, and the formation of silanol groups. The reaction products were verified through HRTEM, SAED, Raman, AFM, and photoluminescence techniques. Through Raman and photoluminescence spectroscopy, WS2 was found to be the same quality whether grown on untreated substrates, oxygen plasma treated substrates, or patterned substrates. Furthermore, oxygen plasma treatment of substrates was shown to improve the results of growth-patterned WS2.

Patterned growth of polycrystalline WS2 monolayers resulted from three distinct methods: using a contact shadow mask during plasma treatment, by prepatterning the growth substrate, and by patterning the source material. An improved CVD synthesis route such as presented here, using plasma-prepared growth substrates and contact between the source and growth substrates, could spur development of WS2 devices which rely on high quality, large area or patterned materials. Directly patterned growth of WS2, enabled by growth substrate pretreatment, is a possible avenue towards high quality devices without contamination from transfer or patterning processes.

Methods

Growth

An MTI 1200X 1-zone furnace with a 3″ diameter quartz tube was loaded in the center with 0.5–1 cm target substrates with matching size source substrates (5 nm WO3 on 90 nm SiO2 on 500 µm Si) facing down, in contact. A graphite crucible with 0.8 g of powdered S (Sigma-Aldrich) was placed 10.1 cm outside of the furnace region, in the quartz tube. Two Aalborg MFCs delivered Ar at 40 sccm and H2 at 60 sccm from 700 °C while ramping until 560 °C while cooling. A Welch 8907 pump created a base pressure of 36 mTorr. The temperature was programmed to wait 5 min, ramp at 18 deg min⁻¹ to 700 °C, then ramp at 5.8 deg min⁻¹ to 900 °C, wait at 900 °C for 25 min, then turn off the heater. The furnace cooled naturally to 560 °C at which point the gases were turned off and the furnace split open for rapid cooling.

Oxygen plasma treatment

Chips were placed face up in the chamber center of a PlasmaEtch PE-50 system operating at 13.56 MHz. The chamber was pumped to 130 mTorr, flushed with O2 for 3 s, then pumped to the tool base of 88 mTorr. O2 flowed at 15 sccm for 20 s to stabilize before plasma ignition. After the treatment the chamber was flushed with air and pumped to 130 mTorr before venting. Plasma times/powers used were 1–6 min and 30–100 W.

Transfer

WS2 grown on SiO2 was coated with a thin layer of PMMA 950 A4 using a dropper, then heated at 180 °C for 5 min to drive off the solvent. The chips were floated in 30% KOH (aq); after 20–40 min the Si chip fell to the bottom leaving the PMMA + WS2 square floating on the surface. The PMMA was cleaned in filtered DI water and blown dry with room temperature air. The PMMA + WS2 was successfully transferred to new SiO2 substrates and lacy carbon TEM grids by placing the square WS2 side down and removing PMMA by annealing at 400 °C for 30 min under 200 mTorr vacuum in an MTI OTF 1200X compact furnace with a 2″ quartz tube.

Characterization

Raman and PL measurements were taken with a Horiba Xplora system with an Andor iDus 420 detector. HRTEM images were taken with a Jeol JEM2100F at Brookhaven National Lab. SAED patterns were taken with an FEI CM 20 TEM in the Laboratory for Multiscale Imaging at Stevens. Roughness measurements were done using a Nanonics MV2000 AFM system with glass fiber tips and AFM data analyzed using WSXM [64]. Surface energy measurements were performed using a Ramé-Hart 250 goniometer by fitting 1–3 µl drops as circular caps and finding the contact angle, then fitting the contact angles of Toluene (purely dispersive surface tension 28.5 mJ m⁻²) and water (dispersive 21.8 and polar 51) to an
Owens–Wendt surface energy model as implemented in the Surface Energy Tool of the DropImage software. Optical images were taken with an Olympus BX41 microscope. WO3 was electron beam evaporated from pellets (Sigma-Aldrich) using a Denton Explorer system. WO3 was patterned using lift-off using SPR3012 photoresist and patterned using photoplot masks using a Karl Suss MA-6 aligner. SiO2 was patterned using a BMR Technology HiEtch ICP system using CHF3 plasma.

Acknowledgments

This work has been partially carried out at the Micro Device Laboratory (MDL) at Stevens Institute of Technology, funded with support from W15QKN-05-D-0011. This research project used microscopy resources, which was partially funded by the National Science Foundation via Grant DMR-0922522, within the Laboratory for Multiscale Imaging at Stevens Institute of Technology. The research was also carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704. This work has also been partially supported by the Stanley Crooks Fellowship and NSF GK12 Fellowship.

References

[18] Liu Z et al 2013 In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes Nat. Nanotechnol. 8 119–24
[23] Zhang Y et al 2013 Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary ACS Nano 7 8963–71
[24] Elías A L et al 2013 Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers ACS Nano 7 5235–42

[33] Gao Y et al 2015 Large-area synthesis of high-quality and uniform monolayer WS$_2$ on reusable Au foils Nat. Commun. 6 8569

[34] Bertolazzi S, Krasnozhon D and Kis A 2013 Nonvolatile memory cells based on MoS$_2$/graphene heterostructures ACS Nano 7 3246–52

[50] Ly T H et al 2014 Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides ACS Nano 8 11401–8

[52] Liu X M, Thomason J L and Jones F R 2009 The concentration of hydroxyl groups on glass surfaces and their effect on the structure of silane deposits Silanes and Other Coupling Agents vol 5 ed K L Mittal (Leiden: Koninklijke Brill NV) pp 25–38

[54] Chen C, Zhang N, Li W and Song Y 2015 Water contact angle dependence with hydroxyl functional groups on silica surfaces under CO$_2$ sequestration conditions Environ. Sci. Technol. 49 14680–7

[61] Lassner E and Schubert W D 1999 Tungsten: properties, chemistry, technology of the element, alloys, and chemical compounds (New York: Springer) ch 3

[62] Wykoff R W G 1931 Structure of Crystals 2nd edn (New York: Chemical Catalog Co.) p 233 and 239 (as interpreted into the file 5910003.cif from the Crystallographic Open Database)
