Dealing with Uncertainty in Systems Engineering

NASA Johnson Space Center
Engineering Academy Seminar
26 July 2007
Mark A. Powell

Stevens Institute of Technology
Topics Today

• Uncertainty in Systems Engineering
• Using Probability in SE to Model Uncertainty
• Using Statistics in SE to Reduce Uncertainty
• Four JSC Examples Using the Methods Discussed
Uncertainty in Systems Engineering
Without Uncertainty, There would be No SE

- Clearly, If
 - We *Fully Understand* the *Problem*, AND
 - We *Fully Understand* the *Solution*, AND
 - The *Solution* is *Feasible* within *all* the *System Constraints*, THEN:
 - We Just Build it and Solve the Problem
 - *We don’t need Systems Engineering!*

- Never Been There, Never Done That – *Have You?*
But, What is Uncertainty? Let’s Get Philosophical!

• First, What do Engineers, Specifically Systems Engineers, Really Do?
 • In Decomposition and Definition: Model Abstractions of a System to Solve the Abstractions of the Problem
 • In Integration and Verification: Model Observed Data taken from the System that was Actually Built, and use Data to Verify that the System should Solve the Problem

• Uncertainty is Epistemological, not Ontological
 • We Want to Determine What is Knowable
 • We can Never Truly Know Reality
What Can Be Uncertain in SE?

- **Unknown Future Event**
 - Will Definitely Occur, Outcome Uncertain
 e.g., Shuttle Mission to Repair Hubble
 - Occurrence Uncertain, Outcome Uncertain
 e.g., Debris Conjunction (collision?) on Orbit with ISS

- **Unknown Existing State**, not directly Observable
 - Measurement Uncertainties
 e.g., Shuttle Position as determined from Radar Data with Noise
 - Precision Limitations in Data
 e.g., Round-off and Truncation

- **Known and Knowable Item**, but Unknown to Us
 - e.g., The Millionth Digit of π;
 Which Canal is Longer, Suez or Panama?
 Can we believe a GFE Item’s Spec’s?
More Things in SE Uncertain

- **Deterministic Event or State**
 - Uncertain States of Nature, Initial Conditions, Parameters
 e.g., Flip of a Coin
 - Outcome Uncertain, Uncertain Model
 e.g., Atmospheric Density at ISS Orbit

- **Physical Randomness in Nature**
 - Heisenberg Uncertainty Principle
 - Quantum Mechanics
 - Radioactive Decay
 - Statistical Mechanics
Where Exactly does Uncertainty Appear in SE?

• Much **Bigger Role for Systems Engineers** than Most Realize, e.g.,
 • Requirements
 • Functional Analysis and Decomposition, Allocation, and Architecture Synthesis
 • Systems Design
 • Integration of Engineering Specialties
 • Quality Assurance, Verification
 • Integration, both System Builds and Interfaces
 • Risk Management, Probabilistic Risk Assessment

• In **Decisions for All of the Above and More**
Where Exactly does Uncertainty Appear in SE?

It’s Everywhere!!!
The Real Challenges
Uncertainty Presents to SE

• SE Usually Deals with *New* Systems – *NEW* ≡ Uncertain
 • Constellation
 • Future Combat Systems
 • Generation II GPS
• SE Usually Deals with *Stringent* Performance and Specialty Requirements – *Uncertainty is Not Well Tolerated*
 • High Required Levels of Performance, e.g., Accuracies
 • Safety
 • Reliability

In SE, We Usually Have *Very Little Event or Other Data,* We Usually Have *Speculative Heuristics,* and are faced with *Very Low Probability Events with Severe Consequences*
How SE Must Respond

• We Must Always *Model* Uncertainty Well
• We Must Always *Reduce* Uncertainty as Much as We Can *Afford*
• We Must Always Make *Good* Decisions *despite* Uncertainty

Good Decision Making by the SE
Under Conditions of Uncertainty
Makes
Good Systems Engineering
Using Probability in SE to Model Uncertainty
Refresher: All of Probability Theory on One Slide

- **The Axioms**: (A, B ≡ A AND B; A|B ≡ A given B; ~A ≡ NOT A)
 - 0 ≤ P(A|H) ≤ 1; Values of Probability
 - P(A|A,H) = 1; Maximum Value if True
 - P(A|H) + P(~A|H) = 1; Mutual Exclusivity and Exhaustiveness
 - P(A,B|H) = P(B|H)*P(A|B,H) = P(A|H)*P(B|A,H); Conditional Law
- **OR Operation**: P(A OR B|H) = P(A|H) + P(B|H) - P(A,B|H)
- **Mutually Exclusivity**: If B and C are Mutually Exclusive
 - AND Operation: P(B,C|H) = 0
 - OR Operation: P(B OR C|H) = P(B|H) + P(C|H)
- **Independence**: If A and B are Independent
 - P(A,B|H) = P(A|H)P(B|H)
 - P(A OR B|H) = P(A|H) + P(B|H) - P(A|H)P(B|H)
- **Marginalization**: For Propositions A, B, and C
 \[P(B | H) = \int_{all A} \int_{all C} P(A, B, C | H) dA dC \]

Probability is Actually Quite Easy!
In SE, We Model Stuff: How to Model Uncertainty?

- As in every other engineering discipline and scientific endeavor, **we always model uncertainty as randomness**
 - Randomness is a *metaphor*
 - This is very *reasonable*

- Why?
 - *Probability theory* and *probability models* developed specifically to deal with *randomness*
 - *More importantly*, probability theory and models based on *axioms of rational and coherent behavior*

This is *very good* for systems engineering!
Some Uses of Probability in SE

- Probabilistic Requirements
- Performance Allocation in Functional Analysis and Decomposition
- Integration Planning and Execution
- Verification Planning
Probabilistic Requirements

- Many Performance Requirements are *Normally* Stated Probabilistically, but not so Obviously
 - The “illities”, by definition, e.g.
 - Reliability – Probability of Survival during Mission
 - Availability – Probability of Readiness for Mission
 - Maintainability – Probability can be Repaired in Time
 - Safety – Probability of No Injury or Death
 - Logistics – Probability Part is There for Repair
 - Quality Assurance Requirements – Verification
 - Some Performance Requirements – Inherently
- By Probabilistically, we mean *in terms of a Probability of Achieving the Performance*
- Many Requirements that should be Stated Probabilistically are *NOT*
Probabilistic Requirement Example

- Original International Space Station Microgravity Mission Requirement

 The ISS Program shall provide 180 days of microgravity per year in periods of no less than 30 days.

 - Known Random Events can Make Mission Impossible
 - Debris Avoidance Maneuvers
 - Unscheduled Maintenance Requiring Use of Attitude Jets

 - Corrected Requirement:

 The ISS Program shall provide a 70% probability of achieving 180 days of microgravity per year in periods of no less than 30 days.
Proper Verification Planning

- Verification Requirements and Planning Establish the **Maximum Acceptable Risk** that the Delivered System will **NOT** Perform as Required with Successful Verification
- Example: Reliability Requirement and Test for a Vehicle
 - **Performance Requirement:** *The vehicle shall have 95% reliability at 100,000 miles.*
 - **Verification Requirement:** *Vehicle reliability shall be verified by Test. The test shall demonstrate 90% assurance that the vehicle will have 95% reliability at 100,000 miles.*
 - **Maximum Acceptable Risk:** 10%; we have 90% **Assurance** (or Probability) that Design achieved 95% Reliability at 100,000 miles *with a Successful Test*
 - **The Test:** Drive two vehicles 107,000 miles
 - **Success Criterion:** Neither fails by 107,000 miles (the data)
- INCOSE IS2004 Paper – Contact me if you want it
Using Statistics in SE to Reduce Uncertainty
Use of Statistics in SE

• Statistics is the Process to Reduce Uncertainty – Quantitatively
• Statistical Recipes that we Learned in Stats 101 – Do NOT Work Well for SE
 • Overconservative – SE’s cannot afford
 • Require Many Data – SE rarely Gets a lot of data
 • Require Many Assumptions (usually hidden) – SE’s all Know the Danger of Using Assumptions
 • Can Only Use Actual Event Data – SE’s have Other Data
 • Censored Data – Event has not happened yet
 • Expert Opinion
 • Surrogate or Analog Data
• SE’s Must Use All Available Data and Information
 • To Reduce Uncertainty as Much as Possible
 • To Make Good Decisions
SE Decision Making

• Systems Engineers Make Decisions with Uncertainty in *Every* Facet of the Project Lifecycle, e.g.,
 • Verification and QA – Obvious
 • Acceptable Risk in Probabilistic Requirements
 • Allocation of Performance and Risk
 • Design and Other Decisions
 • Risk Management

• *Good Decision Making* Makes *Good SE*
Suppose …

- You could Make an SE Decision *without Making any Dangerous or Questionable Assumptions*?
- You could *Fuse* together every scrap of data and information about the Decision, *including non-event data and heuristics*, to *Reduce* your Uncertainty the Very Most Possible?
- You could be *Sure About the Risk* of each Alternative Producing the Desired Outcome of Every Important SE Decision?

Would that Help with those Important SE Decisions?
The Premise

- All Decisions are *Always* Based on Risk Assessments
 - SE Decisions select an Alternative (or Action) to Produce a *Desired Outcome*
 - The Decision Maker selects an Alternative based on *only* one thing:
 - *How Sure they can be, considering the available data, information, and their best judgment, that the Alternative will Produce the Desired Outcome*
 - A *Risk Assessment* (statistical processing of the data) tells the Decision Maker the Level of Assurance (*How sure they can be, based on the Data and Information*) for the Risk of an Alternative *NOT* producing the Desired Outcome
- *Better Risk Assessments Produce Better Project Decisions*

If you know your Risk for each Alternative, Decisions are Smart and Easy
Risk Assessments

• **Qualitative** Risk Assessments
 • Decision Maker *Mentally* Integrates and Fuses a variety of Data and Personal Judgments to produce a *Qualitative Measure of Assurance* the Alternative will produce the Desired Outcome
 • Usually requires *Many Assumptions*
 • For Many SE Decisions, Sufficient
• A **Quantitative** Risk Assessment is a Computational Statistical Inference
 • *Mathematically* Integrates and *Fuses All* Data, Information, and Judgments, producing a *Probability Distribution* for the *Risk* of the Alternative Producing the Desired Outcome
 • A *Numerical Value* for Assurance of Risk Can be Computed from the Risk Probability Distribution
 • *Important* SE Decisions *Need* Quantitative Risk Assessments

Using the Same Data, Quantitative Risk Assessments Always Produce Better Decisions
Problems with Quantitative Risk Assessments

- **Difficult** to Perform
- Time *Consuming* and *Expensive*
- Mathematically *Intense*
- Usually *Forced by the Math* to Ignore or Overlook Important and Relevant Data or Information (e.g., Heuristics and Censored Data)
- Inability to Find Suitable Math Models forces the Use of *Assumptions*
- Statisticians Usually *do not Know Enough about the Problem Space* to provide a Usable Result
- Sometimes, *Impossible* to Obtain a Usable Result
Now, The Good News

• You do **NOT** Have to Be a PhD Statistician and Computer Programming Guru to Do a Quantitative Risk Assessment
• *New* Numerical Methods Make Quantitative Risk Assessments *Quick, Easy, and Inexpensive*
 • With just a *little* Programming, you can solve Important Decisions Right at Your Desk in Just a Few Hours
 • Knowing about these Methods, you can *Direct* a Quantitative Risk Assessment by Support Staff doing a little Programming in Just a Few Hours

You can Make Much Better SE Decisions, Now!
The Foundation: Bayes’ Law

- The **Basis** for all of Decision Theory and Analysis
- Bayes Published in 1763
- Laplace Rediscovered and Republished in 1812
- Jeffreys Rediscovered and Republished again in 1939
- Analytical Derivation from Axiom 4
 - Now consider only the **Rightmost** Equality
 - \(P(A|B,H) = P(B|A,H)^*P(A|H)/P(B|H) \)
- **That’s it!**
Interpretation of Bayes’ Law

• **Bayes’ Law**: \(P(B|A,H) = P(A|B,H) \cdot P(B|H)/P(A|H) \)
 - If \(B \) is a Proposition, and \(A \) is Data, we get \(P(\text{Prop}|\text{Data},H) = P(\text{Data}|\text{Prop},H) \cdot P(\text{Prop}|H)/P(\text{Data}|H) \)
 - Now, \(P(\text{Data}|H) \) is just a *Constant Marginal* Probability, and *unimportant*, so we can ignore it and say \(P(\text{Prop}|\text{Data},H) \propto P(\text{Data}|\text{Prop},H) \cdot P(\text{Prop}|H) \)

• **The Interpretation**
 - \(P(\text{Prop}|H) \) is called the *Prior* - the Marginal Probability (Uncertainty) on the Proposition *before* getting the Data
 - \(P(\text{Data}|\text{Prop},H) \) is called the *Likelihood* - the Probability of Getting the Data Given the Proposition
 - \(P(\text{Prop}|\text{Data},H) \) is called the *Posterior* - the Probability (Uncertainty) on the Proposition *after* the Probability of Getting the Data Given the Proposition is Compounded with the *Prior*

• **Works for Probability Density Functions Also!**
• **Can Fuse Any and All Data Types in the Likelihood!**
Now, How to Avoid Dangerous Assumptions

- Almost All of Our SE or Engineering Assumptions are about Our Models for Uncertainty
- Cannot Completely Avoid Assumptions, However
 - You Can Avoid *Overconservative* Assumptions that can Compound into Overconservative Risks
 - You Can Avoid *Questionable* Assumptions that Managers Always Second Guess
- The Key: Use *Purely Objective* Uncertainty Models (*Non-informative* or *Reference* Models) Instead of Assumptions
 - To Model Uncertainty when you Are *Ignorant* about the Uncertainty, Usually as the Prior Model
 - Provides *Realistic* Worst Case Scenarios without Applying Any Risk Aversion or Tolerance
 - Derivable Using Three Independent Methods
 - Very *Simple* Functions, Generally Inverses and the Constant 1
 - Bernardo and Smith, Excellent Reference

Dealing with Uncertainty in Systems Engineering, JSC Engineering Academy Seminar
© 2000-2007, Mark A. Powell, attwater@aol.com, 208-521-2941, All Rights Reserved
Problems with Bayesian Statistics

- Ever Wonder *Why* You were not Taught Bayesian Statistics in Engineering?
- For Real World Problems, When You *Fuse* All the Data and Information, and Use *Objective* Models, Bayesian Stats:
 - Almost Always Produce *Unrecognizable Uncertainty Models* that are *Multivariate with all Variables Correlated*
 - Usually Produce *Analytically Intractable Solutions* – Impossible to Integrate to Compute Probabilities
 - Are Usually *Impossible to Solve Numerically* using *Ordinary Monte Carlo Methods* – Impossible to Sample Unrecognized Correlated Multivariate Models

Up Until the mid-1990’s, Bayesian Statistics were *Impractical* and Usually *Impossible* to Use to Reduce Uncertainty in *Real World SE Problems*
The Solution

• Markov Chain Monte Carlo (MCMC)
 • A Numerical Method Developed in Europe in 1990’s mainly for Risk and Decisions in Biostatistics and Biomedical Research
 • Uses a Markov Chain to Sample an Uncertainty Model, Including very Complex (correlated, multi-dimensional) and Analytically Intractable Probability Models (like we actually get in the Real World of SE)
 • Ordinary Monte Carlo Calculations Then Can be Used on Samples to Approximate Complex Probability Integrals
 • Simple Algorithm (Metropolis-Hastings)

• Recently Applied to SE Problems
 • INCOSE IS02 Paper (Maintenance Interval)
 • INCOSE IS04 Paper (Optimal Cost Verification)
The Metropolis-Hastings MCMC Algorithm

• To Start, formulate the Posterior density model \(pd(\Theta|\text{data}) \), and select a proposal step size \(d\Theta \)
• Select any legal value for the first Sample: \(\Theta_1 = \Theta_1 \)
• Repeat this Loop to get new samples
 • Propose a new sample: \(\Theta_{i+1} = \Theta_i + \Delta\Theta \), where \(\Delta\Theta \sim U(-d\Theta,d\Theta) \), a Uniform Model Sample
 • Calculate the ratio of Posterior densities:
 \(\alpha = \frac{pd(\Theta_{i+1}|\text{data})}{pd(\Theta_i|\text{data})} \)
 • Obtain a sample \(u \) from a Uniform Model: \(u \sim U(0,1) \)
 • If \(u < \alpha \), then accept the proposed sample as \(\Theta_{i+1} \), else, set the new sample to the previous one: \(\Theta_{i+1} = \Theta_i \)
• Markov Chain is Tuned Manually Using Proposal Step Size \(d\Theta \)
But Sometimes, MCMC Needs Outrageous Assumptions

- For Many Real World SE Decisions, Posteriors Using non-Event Data and/or Objective Models will **NOT** produce a Stable Markov Chain
- Metropolis-Hastings Algorithm will not Work
- Solution: Use *Pseudo-Ignorance* Models
 - Truncate Your Prior Models
 - Limit Range of Scale and Shape Parameters in Models to Some **Outrageous** Value (say, to 10 times larger than realistic)
 - Stabilizes the Markov Chain, Produces Good Sampling and Integration Values
Four Relevant JSC Examples

- **Space Shuttle Cargo Transfer Bag Test (MCMC)**
 - Shows Quantitative Risk Assessment for a *Single Censored Datum* using *Pseudo-ignorance* Models
 - Parameterized by Acceptable Risk
- **Drift of ISS O₂ Sensor for EVA (MCMC)**
 - Lots of Observed Data
 - *Pure Objective* Models Used
- **RSR Locker Loose Screw Probabilistic Risk Assessment**
 - Few Observed Data, *Lots of Censored Data*, Uses *Pure Objective* Models, *Actual Analytical Solution*
 - Parameterized by Failure Modes
- **Human Spaceflight Bone Fracture Risk (MCMC)**
 - *Lots of Censored Data ONLY*, no Actual Breaks, *Pseudo-ignorance* Models
 - Parameterized by Mission Duration
- **Contact Me for Details on these Examples and Others!**
Cargo Transfer Bag Test

- Cargo Transfer Bags (CTB) to be Carried on Shuttle to Space Station
- Required Zipper Cycle Life – 2,000 Cycles
- If CTB Zipper Fails During Launch or Descent, Loose Object could Penetrate the Hull (Rare Event with Extreme Consequences)
- Performed a Single Test
 - One CTB Only
 - 8,000 Successful Zipper Cycles – One Censored Datum Only!

THE Relevant Question

How Sure can we be from the Test Result that the True Risk of CTB Zipper failure by 2,000 Cycles is below some Acceptable Level?
Synopsis for the CTB Test

- Test Datum: Only One Censored Datum
 Successful 8K Cycles without a Failure on One CTB Zipper
- Assumptions (Outrageous):
 - Zipper Cycling Cannot Improve Reliability of the CTB Zipper
 - At Least 62.4% of CTB failures will occur before 30,000 Cycles
- No Stated Maximum Acceptable Risk – So Parameterize

<table>
<thead>
<tr>
<th>Maximum Acceptable Risk of CTB Zipper Failure by 2K Cycles (R_{2K})</th>
<th>Assurance Provided by Test Result P(True R_{2K} < R_{2K})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>P(True R_{2K} < 1%) = 75%</td>
</tr>
<tr>
<td>5%</td>
<td>P(True R_{2K} < 5%) = 88%</td>
</tr>
<tr>
<td>10%</td>
<td>P(True R_{2K} < 10%) = 94%</td>
</tr>
<tr>
<td>20%</td>
<td>P(True R_{2K} < 20%) = 98%</td>
</tr>
</tbody>
</table>
ISS O₂ Sensor Drift

• Problem: Space Station Oxygen Sensor Measurement Accuracy is Observed to drift with Time
 • If the Measured O₂ is in Error by more than ±6mmHG within 270 days since Calibration, it could *Kill* an Astronaut
 • High Error: Severe Brain Damage; Low Error: The Bends
• Proposed Solution Alternatives:
 • Test for Drift rates and Compensate for Drift; *OR*,
 • Redesign O₂ Sensor and Ship Up to ISS, No EVA’s Until Then
• Relevant Questions:
 • What is the *Existing* Risk of Sensor Accuracy Drift Beyond Acceptable Limits?
 • What is the Risk *After* the Proposed Drift Compensation?
 • How *Sure* can we Be about These Risk Values?
O$_2$ Sensor Test Data

Drift of the CSA-O2s During Long Life Evaluation
(Data is pressure corrected)

Accuracy (mmHg) vs. Days Since Calibration

- Linear (1039)
- Linear (1037)
- Linear (1031)
- Linear (1026)
- Linear (1014)
- Linear (1037)

270 Days
Drift Corrected O₂ Sensor Test Data

The Decision is Still Unclear!

Dealing with Uncertainty in Systems Engineering, JSC Engineering Academy Seminar
© 2000-2007, Mark A. Powell, attwater@aol.com, 208-521-2941, All Rights Reserved
Before and After Drift Correction Risk Results

Linear Scale

Logarithmic Scale

JSC Band-aid Chart Guide:

- 5th Percentile Risk
- 95th Percentile Risk
- Color Density = Risk Density
- Most Likely Risk
O₂ Sensor PRA Summary

- Without Drift Compensation: Risk of Exceeding Accuracy Limits at 270 Days is 36% - 46% (with 90% Certainty)
- With Drift Compensation:
 - 95% Sure: Risk within 270 days is < 1.5%
 - 90% Sure: Risk is between 0.55% - 1.5%
- Achieved Stable Markov Chain – No Outrageous Assumptions Needed
RSR Loose Screw PRA

- **Problem:** Screws holding locker door in place in Shuttle Bay are too short
 - If door loses integrity, or falls off, something could penetrate the Shuttle Hull during launch or descent
 - What is the risk of having a loose screw, that could then lead to a risk of losing a door

- **Decision:**
 - Replace and retighten all screws, **OR**
 - Delay flight
Risk of Panel Door Loss

- Complex Risk Question
 - Loss of any Latch or Hinge Plate on Door will cause Loss of Door Integrity
 - Loss of a Latch or Hinge Plate requires Loss of One or More Screws
 - How many lost screws, in what patterns for Latch or Hinge Plate will Cause Loss of Door?
 - The Answer Defines Failure Modes

- Potential Failure Modes
 - Any One to Six Screws Lost in a Latch or Hinge Plate Causes Door Integrity Loss - Conservative
 - Specific Pattern of One to Six Screws Lost in a Latch or Hinge Plate Causes Door Integrity Loss – Realistic Engineering, and Less Conservative
The Probability Equations for Risk of Panel Door Loss

- The Complete Probability Equations are usually Neglected, Usually a Mistake
- The Probability Statements for this Risk
 - \(P(\text{loss of any door}) = 1 - (1 - P(\text{loss of single panel door}))^{(# \text{ of single panel doors})} \times (1 - P(\text{loss of double panel door}))^{(# \text{ of double panel doors})} \times (1 - P(\text{loss of triple panel door}))^{(# \text{ of triple panel doors})} \)
 - \(P(\text{loss of door}) = P(\text{loss of any Latch OR loss of any Hinge Plate on the door}) = 1 - (1 - P(\text{loss of latch}))^{(# \text{ of latches and hinge plates on door})} \)
 - \(P(\text{loss of latch}) = P(\text{loss of Hinge Plate}) = P(M \text{ screws lost of Pattern of 6}) - \text{the failure mode} \)
 - \(= \sum_{j=0}^{6} [P(M \text{ Lost} | j \text{ Loose})P(j \text{ Loose}) + P(M \text{ Lost} | 6 - j \text{Tight})P(6 - j \text{Tight})] \)
Predicted Risk of RSR Panel Door Failure

- The Data: 8 of 273 Screws were Observed to be Loose, no Screws Actually Lost
- Consider All Conservative Failure Modes (1 to 6 screws may be needed to Retain Each Latch and Each Hinge Plate)
- A Worst Case – Specific Screw Patterns will Reduce Risks
- Table of Predicted Risks for Failure due to Lost Screws

| Failure Mode Definition (# Lost Screws in Pattern of 6) | P(Loss Single Door|Data) | P(Loss Double Door|Data) | P(Loss Triple Door|Data) | P(Loss Any Door|Data) |
|--|-----------------|-----------------|-----------------|----------------|
| 1 or more | 1.91% | 3.78% | 5.62% | 29.34% |
| 2 or more | 2.35e-2% | 4.69e-2% | 7.04e-2% | 0.422% |
| 3 or more | 2.57e-4% | 5.14e-4% | 7.71e-4 | 4.63e-3% |
| 4 or more | 2.23e-6% | 4.47e-6% | 6.70e-6% | 4.02e-5% |
| 5 or more | 1.34e-8% | 2.68e-8% | 4.02e-8% | 2.41e-7% |
| 6 | 4.11e-11% | 8.23e-11% | 1.23e-10% | 7.41e-10% |
Human Spaceflight
Bone Fracture Risk

- Space and Life Sciences Directorate Needed **Quantification of Risk of Bone Fracture** during Long Duration Missions to Mars, and For Extended Stays on ISS
- Mission Duration can Vary in Length
- Never any Broken Bones during Any Flight, Ever
- Risk Assessment **Believed Impossible**
Human Spaceflight Bone Fracture Data

- No Bone Fractures Reported for any Human Spaceflight Mission
- 977 µG Exposures
 - No Significance to Index # or Order of Data
 - All Crewmembers Included
 - 294 Flights
 - Includes all Russian flights
 - Includes all U.S. flights
 - 1 Chinese Flight
 - 3 Spaceship One flights
 - All ISS Missions as of May 2005
- 56 MIR missions
- Source is Astronautix.com
Spaceflight Bone Fracture Risk

- Logarithmic Scale, Truncated on Right for Some Detail
- 5th, 50th, and 95th Quantile Contours
- Bandaids Superimposed on Contours
Synopsis

- Uncertainty is *Prevalent* Throughout Systems Engineering
- By Properly Using Probability and Statistics, Uncertainty can *Now* be Handled *Very Effectively* by an SE
- New Methods (*MCMC*, *Reference Models*, and *Pseudo-Ignorance Priors*) are Available to SE’s to Allow Good Statistics
 - Better Reduction of Risk and Uncertainty
 - Better SE Decisions
 - *Better SE!*
Naked Proselytization

- SE Courses Available at Stevens Institute of Technology via the Web
 - SYS601: *Probability and Statistics for Systems Engineers* – Spring Semesters
 - SYS660: *Decision and Risk Analysis for Complex Systems* – Fall and Summer Semesters
 - http://webcampus.stevens.edu/
- Upcoming Two Day Tutorial: ILTAM, Herzeliya, Israel in November 2007
Contact Information

- e-mail
 - mark.a.powell@saic.com
 - mpowell@stevens.edu
 - attwater@aol.com

- Snail Mail
 P.O. Box 57702
 Webster, TX 77598-7702

- Telephone
 - 281-335-3662 (SAIC)
 - 208-521-2941 (Cell)