A COASTAL OCEAN NUMERICAL MODEL

Alan F. Blumberg and George L. Mellor
Geophysical Fluid Dynamics Program
Princeton University
Princeton, NJ 08540

ABSTRACT

A coastal ocean model which, it is believed, is advanced beyond the current state of
the art has been developed but is only in an early stage of application. Characteristics of the model include:

* a second moment turbulence closure model capable of accurate prediction of small
  scale turbulent mixing and derivative ocean features such as mixed layer temperature and depth.

* an algorithm which calculates the external (tidal) mode separately from the internal
  mode. The external mode, an essentially two-dimensional calculation, requires
  a short integrating time step whereas the costly, three-dimensional, internal mode
  can be executed with a long step. The result is a fully three-dimensional code
  which includes a free surface at no sacrifice in computer cost compared to rigid
  lid models.

* a "z" coordinate system with 20 levels in the vertical independent of depth. Thus,
  the environmentally important continental shelf, shelf bank and slope will be well
  resolved by the model. Furthermore, the model features increased resolution in the
  surface and bottom layers.

* coding deliberately designed for modern array processing computers. This is essential
  to three-dimensional ocean simulations requiring long integrations at tolerable cost.

INRODUCTION

In the last several years, second moment models of small scale turbulence have been developed at Princeton University (Mellor, 1973; Mellor and Durbin, 1975; Mellor and Yamada, 1974) such that mixing or the inhibition of mixing of momentum, temperature and salinity (or any other ocean property) can be predicted with considerable confidence. A number of other investigations have tested the simplest version of the model (Martin, 1976; Martin and Roberts, 1977; Weatherly and Martin, 1978) and it is now a part of the large, weather and climate General Circulation Models at NOAA's Geophysical Fluid Dynamics Laboratory (Miyakoda and Sirutis, 1977).

Incorporating an advanced version of this turbulence model (Mellor and Yamada, 1977), a three dimensional, time dependent, numerical ocean model has been recently constructed which, it is believed, is considerably advanced beyond that which is otherwise currently available. Mean velocity, temperature, salinity, turbulent kinetic energy and turbulent macroscale are prognostic variables. Free surface elevation is also calculated prognostically with no sacrifice in computational time. The model incorporates a "o" coordinate system such that the number of grid points in the vertical is independent of depth. Furthermore, the spacing in this transformed coordinate system is also variable so that, for example, one may stipulate finer resolution near the surface and bottom layers resulting in an algorithm which will be very economical on modern array processing computers.

The model responds to tidal forcing, surface wind stress, heat flux, salt "flux" (i.e., evaporation minus precipitation), estuarine outflow and to the specification of temperature, salinity and sea surface elevation at open inflow boundaries.

At this writing, the model has just become operational. Some coastal ocean simulations are presented in this paper but the real effort of comparing data and calculation lies ahead.
DESCRIPTION OF THE NUMERICAL MODEL

Model Physics

The equations of motion which are solved by the model are:

\[
\frac{\partial U}{\partial t} + \nabla \cdot U = - \frac{1}{\rho_o} \frac{\partial p}{\partial x} + \frac{\partial}{\partial z} \left[ K_M \frac{\partial U}{\partial z} \right] + F_x \quad (1a)
\]

\[
\frac{\partial V}{\partial t} + \nabla \cdot V = - \frac{1}{\rho_o} \frac{\partial p}{\partial y} + \frac{\partial}{\partial z} \left[ K_M \frac{\partial V}{\partial z} \right] + F_y \quad (1b)
\]

\[
0 = - \frac{\partial p}{\partial z} + \rho g \quad (2)
\]

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0 \quad (3)
\]

\[
\frac{\partial T}{\partial t} + \nabla \cdot T = \frac{\partial}{\partial z} \left[ K_H \frac{\partial T}{\partial z} \right] + F_T \quad (4)
\]

\[
\frac{\partial S}{\partial t} + \nabla \cdot S = \frac{\partial}{\partial z} \left[ K_H \frac{\partial S}{\partial z} \right] + F_S \quad (5)
\]

where \( U, V, T, S \) are the mean velocity components, temperature and salinity and we define \( \nabla \cdot \nabla () \equiv \nabla (\nabla ()/\partial x + \nabla ()/\partial y + \nabla ()/\partial z). \) The turbulence field is characterized by

\[
\frac{\partial q^2}{\partial t} + \nabla \cdot \nabla (\partial q^2) = \frac{\partial}{\partial z} \left[ K_q \frac{\partial q^2}{\partial z} \right] + 2 (P_s + P_b) - 2 \epsilon + F_{q} \quad (6)
\]

\[
\frac{\partial}{\partial t} (\partial q^2) + \nabla \cdot (\nabla (\partial q^2)) = \frac{\partial}{\partial z} \left[ K_q \frac{\partial}{\partial z} (\partial q^2) \right] + \epsilon (P_s + P_b) - \epsilon \nabla \cdot F_{\xi} \quad (7)
\]

where \( q^2/2 \) is the turbulent kinetic energy; \( \xi \) is a turbulent macroscale; \( P_s \) and \( P_b \) are turbulent shear and buoyancy production; \( \epsilon \) is dissipation and \( \nabla \cdot F_{\xi} \) is a wall proximity function. The problem is primarily closed by expressions for \( K_M, K_H, \) and \( K_q \).
which are function of $3U/3z$, $3V/3z$, $\rho_o^{-1} g\alpha/3z$, $\xi$ and $q$. These are analytically derived relations emanating from closure hypotheses described and implemented by Mellor (1973), Mellor and Yamada (1974), Yamada and Mellor (1975) and most recently by Mellor and Yamada (1977). Appendix A contains most of the details. Empirical constants in these algebraic relations are derived from neutral data but the result has been shown to predict the stabilizing or destabilizing effects of density stratification. The density, $\rho$, is of course related to temperature and salinity through an equation of state for sea water.

The terms, $F_X$, $F_Y$, $F_T$, $F_S$, $F_q$ and $F_{\xi}$ represent horizontal diffusion which are usually required by models to damp small scale numerical computational modes. Oftentimes, the required horizontal diffusivities give rise to excessive smoothing of real oceanographic features. The problem is, of course, ameliorated by decreasing horizontal grid size. In our case, we believe that relatively fine vertical resolution results in a reduced need for horizontal diffusion; i.e., horizontal advection followed by vertical mixing effectively acts as horizontal diffusion in a real physical sense.

**Boundary Conditions**

The boundary conditions at the free surface, $z = \eta(x,y)$, are:

\[
K_M \begin{pmatrix} \frac{3U}{3z} \\ \frac{3V}{3z} \end{pmatrix} = (\tau_{ox}, \tau_{oy}) \text{ as } z \to \eta \tag{8a,b}
\]

\[
K_H \begin{pmatrix} \frac{3T}{3z} \\ \frac{3S}{3z} \end{pmatrix} = (\tilde{H}, \tilde{S}) \text{ as } z \to \eta \tag{9a,b}
\]

\[
q^2 = B_1 u^2_x, \quad z = \eta
\]

\[
q^2 \xi = 0, \quad z = \eta \tag{11}
\]

\[
W = U \frac{3n}{3x} + V \frac{3n}{3y} + \frac{3n}{3t}, \quad z = \eta \tag{12}
\]

where $(\tau_{ox}, \tau_{oy})$ is the surface wind stress vector, $\tilde{H}$ is the net ocean heat flux and $\tilde{S} = S(0)(\tilde{E} - \tilde{P})/\rho_o$ where $(\tilde{E} - \tilde{P})$ is the net evaporation-precipitation fresh water surface flux rate. In equation (10), $u^2_x = |\tau_x|$ and $B_1$ is one of the empirical constants in the turbulent closure relations.

At the bottom, $z = -H(x,y)$, boundary conditions for $T$, $S$, $q^2$ and $q^2 \xi$ are similar to
(9a,b), (10) and (11) where, however, \( \tilde{H} = \tilde{S} = 0 \). In place of (12) we have \( \mathbf{W} = -U\mathbf{AH}/\mathbf{a}x - V\mathbf{AH}/\mathbf{a}y \) where \( H(x,y) \) is the bottom topography. Bottom boundary conditions for \( U \) and \( V \) are supplied by matching the solution to the logarithmic law of the wall which requires a bottom roughness parameter. In deep water, bottom boundary layers may be unimportant, but may assume some importance on the shelf. However, some recent work by Armi (1978) indicates that bottom boundary layers are important for the long time scale development of the thermocline. The hypothesis is that bottom boundaries on, say the continental slopes, mix adjacent vertical layers of water which are then advected into the interior. According to the hypothesis this effect may be more important than small vertical mixing attributable to internal gravity wave breaking, at least, in deeper water well below the mixed layer. Our model, in principle, can account for this behavior.

In the Middle Atlantic Bight simulation discussed later, open boundary conditions require temperature and salinity. Geostrophically derived, vertical gradients of horizontal velocity may be calculated but then either total transport or sea surface elevation is also required.

**Numerical Scheme**

To achieve computational economy the program is divided into external and internal mode subprograms. The first, call it the \texttt{XYt} subprogram, computes the vertically averaged velocity and the surface elevation fields with a short time increment (\( \approx 30 \) sec.) imposed by the shallow water wave speed, CFL criterion. The second, call it the \texttt{XYZT} subprogram, computes the full three-dimensional velocity, temperature and salinity fields with a much longer time increment (\( \approx 40 \) minutes). The \texttt{XYZT} subprogram incorporates the second moment turbulent closure model. It supplies computed bottom friction and vertical integrals of density and vertical variances of horizontal velocity to the \texttt{XYt} subprogram where they behave as lateral friction-like terms in the vertically averaged horizontal equations of motion. (These terms must be parameterized by horizontal eddy viscosities in models which do not adequately resolve vertical structure.) In turn, the \texttt{XYt} subprogram supplies sea surface evaluation to the \texttt{XYZT} subprogram. This may sound complicated, but in the final analysis, the full, three-dimensional field equations are solved with a free surface boundary condition at no additional cost in computer time as compared to rigid lid models (Bryan and Cox, 1968).

The time differencing is the conventional leap frog technique. However, the scheme is quasi-implcit in that vertical diffusion is evaluated at the forward time level. Thus, small vertical spacing is permissible near the surface without need to reduce the time increment or restrict the magnitude of the mixing coefficients.
The vertical coordinate is scaled such that \( \sigma = (z-\eta)/(H+\eta) \) and all equations are transformed to \( x,y,\sigma,t \). Currently, we use 20 vertical levels with increasingly fine resolution near the surface and bottom so that surface and bottom mixed layers are resolved. The resolution in physical space increases shoreward as \( H \) decreases.

Present Status of the Model

In the process of developing the model some intrinsically interesting exploratory calculations have been made. The initial numerical experiments involve the 2-D, \( XYt \) mode (all longshore gradients are neglected) to simulate the effects of coastal upwelling and downwelling. Figures 1, 2 and 3 illustrate the results of an impulsively imposed alongshore wind stress. Three cases are considered: Figure 1 is a homogeneous, upwelling event, Figure 2 a density stratified, upwelling event, and Figure 3 is a density stratified, downwelling event. The role of stratification is confining mixing to surface and bottom layers is readily apparent. In Figure 2 one will observe the formation of a near shore (\( x = 2 \)km) baroclinic jet.

The numerical code has also been exercised in the external (tidal) mode. An application of this mode to the Chesapeake Bay (Blumberg, 1977) showed considerable success. The 2-D tidal mode also has been applied to the Middle Atlantic Bight (1/4° horizontal resolution). Figure 4 illustrates the dynamic response of a "barotropic" MAB to various surface elevation boundary conditions imposed along the open portions of the domain.

The fully three-dimensional code has only very recently become operational with two time steps (recall that the external, vertically averaged mode requires a short time step, whereas the fully three-dimensional calculations can be executed with an economically long time step) after a long debugging period. Figure 5 is the result of a calculation of the Middle Atlantic Bight circulation with manufactured temperature and salinity distributions for initialization and for open boundary conditions. The normal component of velocity along the open boundary is specified by geostrophic balance with a level of no motion at the bottom. Also, for this calculation the surface wind stress and fluxes are zero. A transect east of Cape Hatteras is shown in Figure 6; contours of north/south velocity are drawn in this diagram.

Numerical experiments are now being conducted using the climatological temperature and salinity distributions described by Blumberg, Mellor and Levitus (1978) as initial conditions and at the open boundaries. Preliminary prognostic simulations (temperature, salinity and therefore density are simulated) show a broad, slow Gulf Stream together with a southward flow along the coast. The velocity distributions spin-up in about 5 days; however, the temperature and salinity fields evolve more slowly.
Figure 1. A homogeneous upwelling event induced by an alongshore wind stress of 2.0 dynes/cm² directed into the plane of the paper. The wind stress has been imposed for six hours. The onshore (U negative) and offshore (U positive) isotachs are depicted in the upper portion of the figure, while the alongshore (V positive into the plane of the paper and V negative out of the plane of the paper) isotachs are depicted in the lower portion.
Figure 2. A stratified upwelling event induced by an alongshore wind stress of 1.0 dyne/cm² directed into the plane of the paper. This wind stress has been imposed for twelve hours. The direction of the isotachs is the same as in figure 1. The initial temperature distribution is denoted as $T_0$.

Figure 3. A stratified downwelling event induced by an alongshore wind stress of 1.0 dyne/cm² directed out of the plane of the paper. The wind stress has been imposed for twelve hours. The direction of the isotachs is the same as in figure 1. The initial temperature distribution is denoted as $T_0$. 
Figure 4. A comparison of the dynamic response of the Middle Atlantic Bight after four days to various surface elevation boundary conditions. The heavy arrow indicates the direction of the 1.2 dyne/cm² wind stress imposed at Day=0.
Figure 5. Density driven circulation patterns in the MAB at various depths for a manufactured temperature and salinity distribution.
Figure 6. Contours of calculated North/South velocity (isotachs in cm/sec) on Latitude 36°N. The lower figure is a detail of the upper 450m.
CONCLUSION

The construction and implementation of a fully three-dimensional numerical model capable of predicting the dynamics and thermodynamics of coastal ocean regions is presented. Genuine simulations for comparison with real data have yet to be initiated and will, in fact, be the major goal of future research.

ACKNOWLEDGMENTS

This work is a result of research sponsored by NOAA Office of Sea Grant, Department of Commerce, under Grant # 04-6-158-4476, and NOAA/Princeton University, Visiting Scientist Grant # 04-7-022-4417.
APPENDIX A

Since the paper by Mellor and Yamada (1974), a few modifications have been made to the boundary layer model.

First, the "Level 3" model was further simplified into a "Level 2 1/2" model by neglect of the material and diffusive derivatives for scalar (temperature, salinity, density, etc.) variances. The loss in predictive accuracy is not expected to be important (Yamada, 1977).

Second, as discussed by Mellor and Yamada (1977), the empirical constants cited below have been changed slightly from the original values after a critical reexamination of the data upon which they are based. The overall effect of these changes should be quite small indeed.

A third modification is incorporated here and results from trials of a suggestion by Rodi (1972). Consider the model equations for $\frac{u_i u_j}{\overline{u_i u_j}}, u_i \overline{p'}^r$ and $\overline{p'^2}$:

$$\mathcal{L}_1 \left( u_i u_j \right) = -\frac{u_i u_j}{k_i} \frac{\partial u_j}{\partial x_i} - \frac{u_i u_j}{k_j} \frac{\partial u_i}{\partial x_j} - \frac{q}{3} \frac{\partial}{\partial x_j} \Delta_{ij}$$

$$+ g_j \overline{u_i p'^r} + g_i \overline{u_j p'^r}$$

$$- \frac{q}{3k_1} (u_i u_j - \Delta_{ij} q^2) + C_1 q^2 \left( \frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$$

(A1)

$$\mathcal{L}_2 \left( u_j p'^r \right) = -\frac{u_j}{k_j} \frac{\partial p'}{\partial x_j} - p' \frac{\partial u_j}{\partial x_i} - \frac{q}{3k_2} u_i p'^r$$

$$+ \frac{q}{3k_2} \overline{u_j p'^r}$$

(A2)

$$0 = \frac{u_j}{k_i} \frac{\partial p'}{\partial x_i} - \frac{q}{3k_2} \overline{p'^2}$$

(A3)

the operators $\mathcal{L}_1(\cdot)$ and $\mathcal{L}_2(\cdot)$ represent the material and diffusive derivative terms. The corresponding terms in (A3) have been neglected in accordance with our previous comments.

Now (A1) upon contraction yields the turbulent energy equation,

$$\mathcal{L}_3 \left( q^2 \right) = 2 (p_s + p_b - e)$$

(A4)

where, if $g_1 = (0, 0, -g)$, production and dissipation are defined according to
and $\mathcal{L}_3(\cdot)$ is very nearly but not exactly identical to $\mathcal{L}_1(\cdot)$. Rodi's suggestion is to replace $\mathcal{L}_1(u_i u_j)$ in (A1) with $(u_i u_j/q^2)\mathcal{L}_3(q^2)$, where $\mathcal{L}_3(q^2)$ is obtained in (A4). This could have been incorporated into the paper of Mellar and Yamada (1974) as an alternative and apparently equally consistent step by replacing $\delta_{ij}/3$ by $u_i u_j/q^2$ at one point in their analysis.\footnote{Thus on page 1793 of the Mellar-Yamada paper, in the first sentence below equation (8), substitute $u_i u_j/q^2$ in place of $\delta_{ij}/3$.} Note that if we define $a_{ij}$ such that $u_i u_j = (\delta_{ij}/3 + a_{ij}) q^2$ then $a_{ij} \rightarrow 0$ defines an isotropic limit. Thus, incorporation of Rodi's idea introduces a higher order term into the Mellar-Yamada analysis. This is not incorrect but is somewhat arbitrary since other terms, presumably of the same order, have been neglected. The choice has been made here on the basis that the resulting algorithm survives numerical trauma better than its predecessor and in the hope that the resulting approximation is closer to the full (level 4) equation set.

A similar step is to replace $\mathcal{L}_2(u_i \rho^T)$ with $(u_i \rho^T/2 \ q^2) \mathcal{L}_3(q^2)$ since a term like $\mathcal{L}(\rho^T)$ on the left of (A3) has already been neglected.

The result of these substitutions is that (A1) and (A2) may be rewritten as

$$2 \frac{u_i u_j}{q^2} (p_s + p_b - \epsilon) = -\frac{\partial}{\partial x_k} \frac{\partial u_i}{\partial x_k} - \frac{u_i u_j}{q^2} \frac{\partial u_i}{\partial x_j} - \frac{2}{3} \delta_{ij}$$

$$+ g_i \frac{u_j \rho^T}{q^2} + g_j \frac{u_i \rho^T}{q^2}$$

$$- \frac{q}{3 \kappa_1} (u_i u_j - \frac{\delta_{ij}}{3} q^2) + \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}$$

$$\frac{\rho^T}{q} (p_s + p_b - \epsilon) = -\frac{\rho u_i}{\rho} \frac{\partial u_i}{\partial x_k} - \frac{\partial u_i}{\partial x_k} - \frac{q}{3 \kappa_2} \frac{u_i \rho^T}{q^2}$$

$$- \frac{\Lambda_2}{q^2} \frac{\partial \rho^T}{\partial x_k}$$

where $\rho^T$ in (A2) has been replaced using (A3).

Now, if one makes the boundary layer approximation in (A6) and (A7), all components
of the tensor, \( \partial U / \partial x_i \), may be neglected except for \( \partial U / \partial z \) and \( \partial V / \partial z \). Then, if we again set \( g_1 = (0, 0, -g) \), and define \(- (\bar{u} \bar{w}, \bar{v} \bar{w}) = K_M (\partial U / \partial z, \partial V / \partial z) \) and \(- \rho' \bar{w} \equiv K_H \partial p / \partial z \), and furthermore define

\[
K_M = \varepsilon q S_M, \quad K_H = \varepsilon q S_H
\]

and

\[
\phi_1 = 1 + \frac{3 \varepsilon}{q} (p_s + p_b - \varepsilon) = 1 + \frac{3 \varepsilon}{q} \frac{p + p_b}{\varepsilon} - 1
\]

(A9a)

\[
\phi_2 = 1 + \frac{3 \varepsilon}{q} (p_s + p_b - \varepsilon) = 1 + \frac{3 \varepsilon}{q} \frac{p + p_b}{\varepsilon} - 1
\]

(A9b)

\[
C_1 = \frac{C_1}{\phi_1}
\]

(A9c)

\[
G_H \equiv \varepsilon^2 q^2 \frac{\bar{q}}{\rho_o} \frac{\partial \rho}{\partial z}
\]

(A9d)

then

\[
S_M \left[ \phi_1 - \frac{9 A_1 A_2 G_H}{\phi_2} \right] - S_H \left[ \frac{18 A_1 A_2 G_H}{\phi_1} - \frac{9 A_1 A_2 G_H}{\phi_2} \right] = A_1 \left[ \frac{1 - 6 A_1 / B_1 - 3 C_1}{\phi_1} \right]
\]

(A10)

\[
S_H \left[ \phi_1 - 3 A_2 B_2 G_H - 18 A_1 A_2 G_H \right] = A_2 \left[ \frac{1 - 6 A_1 / B_1}{\phi_1} \right]
\]

(A11)

Equation (A9c) where \( C_1 \) = constant is another numerically motivated modification and has no physical basis. Generally \( C_1 = C_1 \) except in startup situations or below the mixed layer where \( q^2 \) and other variables are dominated by round-off error.

It may be shown that the correlation equations for temperature and salinity are identical to those for density so that

\[
- \overline{wT} = K_H \partial T / \partial z \text{ and } - \overline{wS} = K_H \partial S / \partial z.
\]

Thus the algebraic forms of (A10) and (A11) have been altered somewhat from the original Level 3 model of Mellor and Yamada (1974, 1977). For \( p_s + p_b = \varepsilon \), the model collapses to the same Level 2 (e.g., as in Mellor and Durbin, 1975) model as before. In fact, the present version conforms very nearly to the previous version when \( 0 < (p_s + p_b) / \varepsilon < 2 \) but is numerically more rugged and more readily accommodates startup shocks, for example.
A necessary assumption is that all lengths are proportional to each other. Thus, we let

\[(t_1, t_2, A_1, A_2) = (A_1, A_2, B_1, B_2) \hat{L} \quad \text{(A12)}\]

By appealing to simple laboratory data (Mellor and Yamada, 1977) all of the empirical constants were assigned the values;

\[(A_1, A_2, B_1, B_2, C_1) = (.92, .74, 16.6, 10.1, 0.08) \quad \text{(A13)}\]

There remain unknowns in equations (6) and (7). First, in analogy to (A8a,b) we define

\[K_q \equiv \Delta q S_q \quad \text{(A14)}\]

Since we have found that \(S_M\) and \(S_H\) are dependent on stability, one would suppose this to be the case with \(S_q\), although a determination of \(S_q\) similar to that of \(S_M\) and \(S_H\) would require an appeal to equations for triple correlations which would require additional modelling assumptions and constants. Thus we have variously tried \(S_q = \text{constant} = 0.20\) (determined from neutral boundary layer and channel flow data) and the stability dependent \(S_q = 0.20(S_M/0.392)\) where the value \(S_M = 0.392\) corresponds to neutral flow and where production is balanced by dissipation. However, results are not overly sensitive to this choice. In this paper, we have used the second prescription for \(S_q\).

In equation (7), \(\overline{W}\) is a "wall proximity" function defined as

\[\overline{W} = 1 + E_2 \left( \frac{L}{L} \right)^2 \quad \text{(A15)}\]

\(L\) has a more general definition but for the ocean problem \((\kappa L)^{-1} = (n-z)^{-1} + (H+z)^{-1}\). Near surfaces it may be shown that both \(\xi\) and \(L\) are proportional to distance from the surface (\(\kappa = 0.4\) is the constant of proportionality) and therefore \(\overline{W} = 1 + E_2\); far from surfaces \(\overline{W} = 1\).

Finally, the following constants have been determined from simple laboratory boundary layer and channel flow data (Mellor and Yamada, 1977) such that

\[(E_1, E_2, E_3) = (1.8, 1.33, 1.0) \quad \text{(A16)}\]

\(E_3 = 1.0\) is a default value awaiting a comparison of a data set and calculation that would discriminate an alternative value.
REFERENCES


