General Examination: Real Variables

The answers without reasonable supporting work will not receive credit.

Problem 1. Evaluate the limit and justify the result:

$$\lim_{n \to \infty} n \int_0^1 \frac{x^{n-1}}{2020 + x} dx$$

Problem 2. Consider the identity operator I(x) = x.

- (a) Let $I : L^1[0,1] \mapsto L^2[0,1]$. Is operator I bounded? Prove or find a counter example: If $||x_n||_1 \to 0$ as $n \to \infty$, then $||x_n||_2 \to 0$.
- (b) Let $I : L^2[0,1] \mapsto L^1[0,1]$. Is operator I bounded? Prove or find a counter example: If $||x_n||_2 \to 0$ as $n \to \infty$, then $||x_n||_1 \to 0$.

Problem 3. Let X be a Banach space and suppose that mapping $f : X \mapsto X$ is contractive. Define $g(x) = x - f(x), x \in X$. Show that the mapping $g : X \mapsto X$ is one-to-one and onto. Also show that g and its inverse are continuous.

Problem 4. Consider the sequence of functions $\{\cos(nr)\}_{n=1}^{\infty}$ defined on the set \mathbb{Q} of rational numbers, $r \in \mathbb{Q}$. Prove that there is a subsequence of $\{\cos(nr)\}$ that converges pointwise on \mathbb{Q} to a real-valued function.

Problem 5. Consider the differential equation

$$x'(t) = \cos\left(x^2 + 3x + \frac{\pi}{2}\right), \quad 0 \le t \le T < \infty,$$

with initial condition $x(0) = x_0$ and solutions in C[0, T].

Let $K \subset C[0,1]$ be the closure in space C[0,T] of all solutions x(t) to the above initial value problem for all x_0 such that $|x_0| < 1$. Let $y(t) = e^t$. Prove that there exists function $z \in K$ such that

$$||z - y|| = \operatorname{dist}(y, K).$$

Here dist(y, K) is the distance in space C[0, T] between point y and the set K.

Problem 6. Let us consider Sobolev space $W^{2,1}[0,1]$ of functions, which are in $L^2[0,1]$ along with their derivatives. Sobolev space is equipped with the following inner product and is complete:

$$(x,y) = \int_0^1 [x(t)y(t) + x'(t)y'(t)]dt.$$

- (a) Prove that $W^{2,1}[0,1] \subset C[0,1];$
- (b) Let f(x) = x(0). Is it possible to find $y \in W^{2,1}[0,1]$ such that $\forall x \in W^{2,1}[0,1], f(x) = (x,y)$? If yes, find such function y(t).