General Examination: Algebra

Solve at least three items from each problem. (Items are labeled by (a), (b), (c) and (d).)

Problem 1.

- (a) Let $S = \mathbb{R} \setminus \{1\}$. Define a binary operation * on S by a * b = a + b + ab.
 - (i) Prove that (S, *) is an abelian group.
 - (ii) Find all elements of order 3 in (S, *).
- (b) Let $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ and U(n) the group of units of \mathbb{Z}_n . Show that if n > 2 then U(n) has an element of order 2.
- (c) Find an element of largest possible order in the group of permutations S_{10} .
- (d) Denote by D_n the *n*th dihedral group (the group of rigid motions of a regular *n*-gon). Find the center of the group D_8 . [Recall that the center Z(G) of a group G consists of all elements $g \in G$ such that gx = xg for any element $x \in G$]

Problem 2.

- (a) Let H be a subgroup of index 2 of a group G. Show that H is a normal subgroup of G and find the factor-group G/H.
- (b) Let $T = \left\{ \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$ be a set of 2x2 matrices over \mathbb{R} with determinant 1.
 - (i) Show that T is a group.
 - (ii) Let U be a subset of T consisting of all matrices of the type $\begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$, $c \in \mathbb{R}$. Show that U is a normal subgroup of T.
 - (iii) Show that U is isomorphic to the additive group \mathbb{R}^+ and the factor-group T/U is isomorphic to the multiplicative group \mathbb{R}^* .
- (c) Let J be an ideal in a ring R. Prove that

$$I = \{ r \in R \mid rt = 0 \text{ for every } t \in J \}$$

is also an ideal in R.

(d) Show (using Fermat's Little Theorem) that if p = 4n+3 is prime then there is no solution to the equation $x^2 = -1 \pmod{p}$.

Problem 3.

- (a) Let $F = \mathbb{Z}_2[x]/(x^3 + x + 1)$. Show that F is a field and find $(x^2 + x + 1)^{-1}$ in F.
- (b) Show that $\sqrt[2]{3} + \sqrt[3]{5}$ is algebraic over \mathbb{Q} and find its minimal plynomial.
- (c) Find the Galois group of the polynomial $x^4 + 2x^2 8$ in $\mathbb{Q}[x]$.
- (d) Let F be a finite field of characteristic 2. Prove that every element in F is a square.