General Examination: Graph Theory and Combinatorial Analysis

Problem 1. Let G be a graph.

- (a) Define $\kappa(G)$ the (point) connectivity, $\lambda(G)$ the line connectivity, and $\delta(G)$ the minimum degree
- (b) Give the relationships between them
- (c) Prove:

$$\lambda(G) \leqslant \frac{2e(G)}{n(G)},$$

where n(G) is the number of nodes in G and e(G) is the number of edges

(d) Prove: if the diameter of G, d(G), is ≤ 2 then $\lambda = \delta$

Problem 2.

- (a) Let G be a graph. Define: G is hamiltonian.
- (b) If G is hamiltonian and S is a set of nodes, then what is the relationship between |S| and the number of components of G S? Prove your answer.
- (c) State Ore's theorem for hamiltonicity

Problem 3.

- (a) Define the norm of a difference table
- (b) Use this norm to derive the closed formula for $\sum_{i=1}^{n} k^2$

Problem 4.

- (a) State Generalized Inclusion / Exclusion
- (b) Briefly describe one application of it