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Throughout this paper, m denotes Lebesgue measure on R.

Problem 1. Give an example of an open set A⊆R such that m(A)< m(A), where
A is the closure of the set A.

Problem 2. Let P be the subspace of C[1,∞) with uniform metric that consists of
functions that are bounded by a function of the form 1/xb (b ∈ R, b > 0), i.e.,

P = { f ∈C[1,∞) | ∃b ∈ R,b > 0 s.t. | f (x)| ≤ 1/xb on R}.

Is P complete?

Problem 3. Let f ≥ 0 on [0,1] be measurable. Suppose
∫
[0,1] f n dm =C < ∞ for

all n = 1,2, . . .. Prove that there is a measurable subset B ⊆ [0,1] s.t. f = χB a.e.
on [0,1]. (Here χB denotes the characteristic function of the set B.)
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(b) Prove that the inequality is, in fact, strict.

Problem 5. Is linear operator A : l1 7→ l1,
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bounded? If yes, evaluate its norm.

Problem 6. Is F = {tan(ax) | −1
2 ≤ a≤ 1} pre-compact as a subspace of C[−1,1]

with the uniform metric?


