General Examination: Real Analysis

Throughout this paper, *m* denotes Lebesgue measure on \mathbb{R} .

Problem 1. Give an example of an open set $A \subseteq \mathbb{R}$ such that $m(A) < m(\overline{A})$, where \overline{A} is the closure of the set A.

Problem 2. Let \mathcal{P} be the subspace of $C[1,\infty)$ with uniform metric that consists of functions that are bounded by a function of the form $1/x^b$ ($b \in \mathbb{R}$, b > 0), i.e.,

$$\mathcal{P} = \{ f \in C[1,\infty) \mid \exists b \in \mathbb{R}, b > 0 \text{ s.t. } |f(x)| \le 1/x^b \text{ on } \mathbb{R} \}.$$

Is \mathcal{P} complete?

Problem 3. Let $f \ge 0$ on [0,1] be measurable. Suppose $\int_{[0,1]} f^n dm = C < \infty$ for all n = 1, 2, ... Prove that there is a measurable subset $B \subseteq [0,1]$ s.t. $f = \chi_B$ a.e. on [0,1]. (Here χ_B denotes the characteristic function of the set *B*.)

Problem 4. (a) Prove that

$$\int_0^{\pi/2} \sqrt{x \sin x} \, dx \le \frac{\pi}{2\sqrt{2}}.$$

(b) Prove that the inequality is, in fact, strict.

Problem 5. Is linear operator $A : l^1 \mapsto l^1$,

$$Ax = \left(\left(1 - \frac{1}{3}\right) x_1, \left(1 - \frac{1}{3} + \frac{1}{9}\right) x_2, \dots, \left(1 - \frac{1}{3} + \frac{1}{9} - \dots + \frac{(-1)^n}{3^n}\right) x_n, \dots \right)$$

bounded? If yes, evaluate its norm.

Problem 6. Is $\mathcal{F} = \{ \tan(ax) \mid -\frac{1}{2} \le a \le 1 \}$ pre-compact as a subspace of C[-1, 1] with the uniform metric?