General Examination: Complex Variables

Problem 1. Let f(z) be analytic in the region |z| > 1. Suppose that $\lim_{z \to \infty} f(z) = 0$. Show that

$$\frac{1}{2\pi i} \int_{|\zeta|=2} \frac{f(\zeta)}{\zeta - z} d\zeta = -f(z)$$

whenever |z| > 2.

Problem 2. Let *G* be a connected open set on the complex plane, and let $z^* \in G$. Suppose a non-constant function *f* is analytic in $G \setminus \{z^*\}$. Show that if z^* is a limit of zeros of *f*, then it is an essential singularity of *f*.

Problem 3. Let $p_n(z) = z^n - z - 1$. Prove that for any given r < 1 < R, there is an N such that all zeros of $p_n(z)$ lie in the annulus $r \le |z| \le R$ for all $n \ge N$.