General Examination: Graph Theory and Combinatorial Analysis

Problem 1.

- (a) State
 - Hall's Marriage Theorem
 - König-Egeváry Theorem (term rank/covering number)
- (b) Use the König-Egeváry Theorem to prove Hall's Theorem

Problem 2.

- (a) Determine the left edge of the difference table for $f(x) = x^3$
- (b) Use (a) to derive the formula for $\sum_{k=1} k^3$

Problem 3.

- (a) Define R(p,q,2)
- (b) Prove: R(3, 3, 2) = 6

Problem 4. Define κ – the (point) connectivity and λ – the line connectivity of a (simple) graph G

- (a) Prove $\kappa \leq \lambda \leq \delta$ (the minimum degree)
- (b) If $G = K_{p,q}$ find $\kappa(G)$ and $\lambda(G)$ give reasons

Problem 5.

- (a) Define: G is Eulerian
- (b) State and prove the necessary and sufficient conditions for G to be Eulerian

Problem 6.

- (a) Suppose π is a realizable degree sequence. Define: π is forcibly hamiltonian
- (b) State Chvátal's condition for forcible hamiltonicity
- (c) Chvátal's condition yields the largest upper order ideal of forcibly hamiltonian degree sequence. What is the meaning of this statement?