General Examination: Algebra

To pass the exam, solve at least two problems from each part and at least eight problems in total.

Group theory

Problem 1. Prove that a group *G* is finitely generated if and only if any increasing sequence $H_1 \le H_2 \le \ldots$ of subgroups of *G* stabilizes, i.e. $H_i = H_j$ for $i, j \ge k$ starting from some *k*.

Problem 2. Compute the order of the automorphism group $\operatorname{Aut}(\mathbb{Z}_{p^k})$ of the cyclic group \mathbb{Z}_{p^k} of a primary order p^k .

Problem 3. Let G be a group of order pq^2 where p > q are prime numbers. Prove that G is solvable.

Problem 4. Let A be a finitely generated abelian group such that any subgroup of A is a direct summand of A. Prove that A is a finite cyclic group.

Ring theory and polynomials

Problem 5. Compute the number of all ideals of the ring $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_6$.

Problem 6. Prove that $\mathbb{Z}[i]$ is a Euclidean domain.

Problem 7. Let *R* be a commutative ring with identity. Let *M* and *N* be distinct maximal ideals of *R*. Prove that $R/(M \cap N)$ is isomorphic to the direct sum of two fields.

Problem 8. Let *a* and *p* be integers, *p* prime and $a \neq \pm (p+1)$. Prove that the polynomial $px^4 + ax + 1$ is irreducible over the field of rationals.

Field theory and Galois theory

Problem 9. Prove that the product of all non-zero elements of a finite field is -1.

Problem 10. Let *H* be an extension of a field *F* and [H : F] = n. Let $f \in F[x]$ be an irreducible polynomial of degree *m* such that gcd(m,n) = 1. Prove that *f* has no root in *H*.

Problem 11. Let a field *H* be a finite dimensional extension of a field *F* and *G* the group of *F*-automorphisms of *H*. Prove that $|G| \leq [H:F]$.

Problem 12. Let $F = \mathbb{Q}(\alpha)$ where $\alpha = \sqrt{1 + \sqrt{2}}$. Find the Galois group $\operatorname{Gal}(F/\mathbb{Q})$ up to isomorphism.