General Examination: Real Analysis

Problem 1. Denote $\operatorname{Irr}^2 = \{(x, y) \in \mathbb{R}^2 \mid x, y \notin \mathbb{Q}\}$. Is there a subset $A \subseteq \mathbb{R}^2$ that is not Lebesgue measurable, but such that $B = A \cap \operatorname{Irr}^2$ is measurable?

Problem 2. Determine if the following is true or false. Let $f \ge 0$ be a bounded measurable function on \mathbb{R} . Then

$$\int_{\mathbb{R}} f \, dm = \inf \left\{ \left. \int_{\mathbb{R}} \varphi \, dm \right| \varphi \text{ simple, } f \leq \varphi \right\}.$$

Problem 3. Find a non-negative sequence (α_n) in \mathbb{R} s.t.

$$\lim_{n\to\infty}\int_0^{\pi/2}\alpha_n\sqrt{\sin\frac{x}{n}}\,dx$$

is finite and nonzero.

Problem 4. Let the operator $A : C[0,2] \rightarrow C[0,2]$ be defined by

$$Ax(t) = t + \int_0^t \frac{x(u)}{2 + x(u)^2} du.$$

Show that *A* has a unique fixed point in C[0,2].

Problem 5. Let $x_n \in C[0, 1]$ and $x_n(0) = 0$ for all n = 1, 2, ... Suppose that for all $t_1, t_2 \in [0, 1]$ and all n = 1, 2, ... we have

$$|x_n(t_1)-x_n(t_2)| \leq |t_1-t_2|^{(1+\frac{1}{n})^{-n}}.$$

Show that the family $\{x_n\}$ has a limit point in C[0, 1].

Problem 6. Let operator $A : \ell^2 \to c$, where *c* denotes the space of all sequences of real numbers, be defined on $x = (x_1, x_2, ...)$ by $A(x) = (y_1, y_2, ...)$, where

$$y_n = \frac{1}{n\sqrt{n}} \sum_{i=1}^n x_i.$$

- (a) Show that $A(x) \in \ell^2$.
- (b) Show that norm of A as operator $\ell^2 \mapsto \ell^2$ is less than $\sqrt{2}$.