General Examination Probability and Mathematical Statistics

Problem 1. For a rolling die, assume the probability of each possible outcome is proportional to the corresponding number of points X.

- (a) (5pts) Formulate the probability space for this random experiment.
- (b) (5pts) Assume an insider always revealing the parity of X. Determine the sub- σ -field \mathscr{G} due to the parity.
- (c) (5pts) Determine the probability distribution $P(X \leq 3 \mid \mathscr{G})$.
- (d) (5pts) Verify the total probability

$$E[P(X \le 3 \mid \mathscr{G})] = P(X \le 3).$$

Problem 2. Suppose that X_i 's are i.i.d. with $X_i \sim \mathcal{N}(\mu, 1), i = 1, 2, \cdots$.

- (a) (5pts) Evaluate the probability density of X_1^2 and then determine the distribution of $\sum_{i=1}^n X_i^2$ for $n \ge 2$.
- (b) (5pts) Show that \overline{X} is sufficient to μ .
- (c) (8pts) For $\mu = 0$, show that

$$\frac{\sqrt{nX}}{\sqrt{(n-1)^{-1}\sum_{i=1}^{n}(X_i-\bar{X})^2}}$$

_ _

is of Student t distribution with degree of freedom n-1.

(d) (7pts) Show that the distribution of $\sum_{i=1}^{n} (X_i - \mu)^2$ can be approximated by a normal distribution as n is large.

Problem 3. For a simple and random sample X_1, \dots, X_n from one population with variance σ^2 , let

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

- (a) (8pts) Show that S^2 is not unbiased to σ^2 .
- (b) (8pts) Show that $S^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$ is a consistent estimator of σ^2 .

(c) (8pts) Suppose the population is normal. Show that the modified estimator

$$\frac{n}{n-1}S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X})^2$$

gets the mean squared error $\frac{2\sigma^4}{n-1}$.

Problem 4. Suppose $X_n \xrightarrow{L} X \sim \mathcal{N}(\mu, \sigma^2)$ and independently $Y_n \xrightarrow{L} a \neq 0$ as $n \to \infty$.

- (a) (8pts) Determine the limit distribution of $X_n + Y_n$ as $n \to \infty$.
- (b) (8pts) Determine the limit distribution of $Y_n X_n^2$ as $n \to \infty$.

Problem 5. (15pts) For a real sequence b, a_1, a_2, \cdots such that $a_n(X_n - b) \xrightarrow{L} Z$ and a real function g continuously differentiable at b, show that

$$a_n[g(X_n) - g(b)] \xrightarrow{L} g'(b)Z$$
 as $n \to \infty$.