General Examination: Real Analysis

Problem 1. Let *K* be a compact metric space. Show that every isometry $K \rightarrow K$ is surjective.

Problem 2. Let *A* be a non-Lebesgue measurable subset of [0, 1]. Prove that there exists some $0 < \varepsilon < 1$ such that for any Lebesgue measurable subset *E* of [0, 1] with $m(E) \ge \varepsilon$, the set $A \cap E$ is not Lebesgue measurable. (*m* denotes the Lebesgue measure on \mathbb{R} .)

Problem 3. Let $f : \mathbb{R} \to \mathbb{R}$ be monotone and $g : \mathbb{R} \to \mathbb{R}$ be Lebesgue measurable. Prove that the composition $f \circ g$ is Lebesgue measurable.

Problem 4. For a nonnegative Lebesgue integrable function f on [0, 1], show that

$$\lim_{n \to \infty} \int_{[0,1]} \sqrt[n]{f} \, dm = m(\{x : f(x) > 0\}),$$

where *m* denotes the Lebesgue measure on \mathbb{R} .

Problem 5. Show that a closed proper vector subspace of a normed vector space is nowhere dense.

Problem 6. On the vector space C[0,1] of continuous functions $[0,1] \rightarrow \mathbb{R}$ consider the two norms

$$||f||_C = \sup_{0 \le x \le 1} |f(x)|$$
 and $||f||_1 = \int_0^1 |f(x)| dx$.

Consider the identity operator $I : (C[0,1], \|\cdot\|_C) \mapsto (C[0,1], \|\cdot\|_1)$. (a) Is *I* continuous?

(b) Is *I* surjective?

(c) Is *I* open?