General Examination: Real Analysis

1. Let *C* be a non-empty closed subset of a metric space (X,d). Show that the function $f(x) = \inf\{d(x,y), y \in C\}$ is continuous and moreover, f(x) = 0 if and only if $x \in C$.

2. Give an example of a normed vector space X and a proper subspace S of it, which is isometric to the space X.

3. Let *X* be a complete metric space and let $x_0 \in X$, r > 0. Let *B* be the closed ball of radius *r* centered at x_0 : $B = B_r(x_0) = \{x \in X : \rho(x, x_0) \le r\}$. Let the mapping *T* be Lipshitz-continuous with a Lipschitz constant *c*:

$$\rho(Tx,Ty) \le c\rho(x,y).$$

Suppose $cr + \rho(Tx_0, x_0) \leq r$. Prove that $T(B) \subset B$ and that mapping $T : B \mapsto X$ has a fixed point.

4. Let
$$f_n(x) = \sum_{k=1}^n (x^k - x^{2k}), x \in E = [0, 1]$$
, and let $f(x) = \lim_{n \to \infty} f_n(x), x \in E$.

(a) Is the function f continuous in E? If no, find the Lebesgue measure of the subset in E, on which the function f is continuous.

(b) Does the sequence f_n converge to f uniformly in E?

5. Let the set $E \subset \mathbb{R}$ have a finite Lebesgues measure $m(E) < \infty$. Let $f_n : E \mapsto \mathbb{R}$ and for every $\varepsilon > 0 \exists \delta > 0$ such that for all $n \ge 1$ and any measurable set $A \subset E$ with $m(A) < \delta$,

$$\int_A |f_n| \, dm < \varepsilon.$$

Let $f_n \to f$ pointwise a.e. on *E*. Prove that *f* is integrable over *E*.