General Examination: Complex Variables

Problem 1. Prove or disprove (provide arguments, or give a counterexample):

- (a) Let z_1, z_2, z_3, z_4 be nonzero complex numbers. Then at least one of the numbers z_i/z_j $(i, j \in \{1, 2, 3, 4\}, i \neq j)$ has nonnegative real and imaginary parts.
- (b) Suppose the Taylor series $\sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R, $0 < R < \infty$. Then the Taylor series $\sum_{n=0}^{\infty} a_{2n} z^n$ has a radius of convergence R^2 .
- (c) Let f(z) = u(x,y) + iv(x,y) be a complex differentiable function on an open connected set *G*, where u = Re f, v = Im f, and z = x + iy. Then $f(z) = v_y(x,y) + iv_x(x,y)$ is a complex differentiable function on *G*. (Here v_x, v_y denote the partial derivatives of *v*.)

Problem 2. Suppose f is an analytic function on $\{z \in \mathbb{C} \mid 0 < |z| < 1\}$, the punctured unit disk. Prove that if Re f is a bounded function, then f has a removable singularity at 0.

Problem 3. Suppose f(z) is a complex differentiable function on an open set D.

- (a) Prove that f has a Taylor series expansion about each point $z_0 \in D$ with a positive radius of convergence R > 0.
- (b) Assuming additionally that $R < \infty$, show that *f* has at least one singularity on the boundary of the disk $|z z_0| < R$.

Problem 4. Let *f* be an entire function with the property that

f(z+m+ni) = f(z) for all $z \in \mathbb{C}$, $m, n \in \mathbb{Z}$.

Prove that f is a constant.

Problem 5. Use complex analysis techniques to evaluate $\int_0^\infty \frac{dx}{1+x^7}$.