General Examination: Algebra

- 1. Let $G = \mathbf{GL}_n(\mathbb{R})$ be the group of nonsingular $n \times n$ matrices over the real numbers \mathbb{R} , and let $S = \mathbf{SL}_n(\mathbb{R})$ be the subgroup of *G* consisting of matrices of determinant 1.
 - (i) Show that the subgroup *S* is normal in *G*.
 - (ii) Show that the quotient G/S is isomorphic to the multiplicative group of \mathbb{R} .
- 2. Let *G* be a group of order $231 = 3 \cdot 7 \cdot 11$. Prove that a Sylow 11-subgroup is contained in the center of *G*.
- 3. Let R = C[0,1] be the ring of all continuous real-valued functions on [0,1] with addition and multiplication defined by:

$$(f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

- (i) Prove that for any $x_0 \in [0,1]$, $I = \{f \in R \mid f(x_0) = 0\}$ is an ideal in *R*.
- (ii) Prove that every ideal $I = \{f \in R \mid f(x_0) = 0\}$ is maximal.
- (iii) Prove that there are no other maximal ideals.
- Let *E* be an extension field of *F*, and let α ∈ *E* be transcendental over *F*. Show that if β ∈ *E* is algebraic over *F*(α), then there is a nonzero polynomial *f*(*x*, *y*) ∈ *F*[*x*, *y*] such that *f*(α, β) = 0.