General Examination: Real Analysis

Problem 1. Which of the following properties of metric spaces are preserved under any surjective continuous mappings (provide reasons in each case):

- (a) completeness,
- (b) total boundedness,
- (c) separability,
- (d) compactness?

Problem 2. Let *A* be a linear operator $A : l^2 \mapsto l^2$ given by

$$Ax = \left(\left(1 + \frac{1}{2}\right) x_1, \left(1 + \frac{1}{2} + \frac{1}{4}\right) x_2, \dots, \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}\right) x_n, \dots \right)$$

for $x = (x_1, x_2, ...)$. Is A bounded? If yes, evaluate its norm.

Problem 3. Let $f \in L^2(\mathbb{R})$ and define

$$g(x) = \int_x^{x+1} f(t) dt.$$

Prove that $\lim_{x\to\infty} g(x) = 0.$

Problem 4. Let f be a continuous function on \mathbb{R} . Show that the inverse image with respect to f of a Borel set is Borel.

Problem 5. Let (f_n) be a sequence of differentiable functions on [a,b], $-\infty < a < b < \infty$, whose derivatives are uniformly bounded and there is a point $x_0 \in [a,b]$ such that $(f_n(x_0))$ is bounded in \mathbb{R} . Prove that (f_n) has a uniformly convergent subsequence in C[a,b].

Problem 6. Determine the limit

$$\lim_{n\to\infty}\int_0^1 \frac{n\cos^2 x}{1+n^2x^2} dx.$$