General Examination: Real Analysis

Problem 1. The oscillation of a function f over an interval I is defined as $osc(f, I) = \sup_{x,y \in I} |f(x) - f(y)|$. Then the oscillation at point x is

$$\operatorname{osc}(f, x) = \inf_{r>0} \operatorname{osc}(f, (x - r, x + r)).$$

Prove that *f* is continuous at *x* if and only if osc(f, x) = 0.

Problem 2. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $g : \mathbb{R} \to \mathbb{R}$ be measurable. Show that h(x) = f(g(x)) is measurable.

Problem 3. Let $\mu(X) < \infty$ and *f* be Lebesgue's integrable on *X*. Prove that the Lebesgue's integral is equal to the limit of the Lebesgue's integral sums

$$\int_X f(x)d\mu = \lim_{\lambda \to 0} \sum_k \xi_k \cdot \mu(\{x \in X : t_k \le f(x) \le t_{k+1}\}),$$

where $\lambda = \sup_k |t_k - t_{k+1}|$ is the diameter of partition t_k and points $\xi_k \in [t_k, t_{k+1}]$ are chosen randomly.

Problem 4. Prove or disprove that the space l_{conv}^{∞} of converging number sequences $x = (x_1, x_2, \dots, x_n, \dots)$ is separable, i.e., contains a countable dense subset.

Problem 5. Let operator $A : l^p \mapsto l^p$, $p \ge 1$, be defined as $Ax = (a_1x_1, \dots, a_nx_n, \dots)$, where sequence $\{a_n\}$ is bounded and $x = (x_1, \dots, x_n, \dots) \in l^p$. Prove that the operator A is compact if and only if $\lim_{n \to \infty} a_n = 0$. (Reminder: an operator A is compact if it maps bounded sets into relatively compact sets.)

Problem 6. Let operator *A* map a compact metric set (X, ρ) into itself and let $\rho(A^2x, A^2y) < \rho(x, y)$. Then prove or disprove that the operator *A* has a fixed point $x_0 \in X$, i.e., $Ax_0 = x_0$.