General Examination: Complex Analysis

Problem 1. Suppose that $\{f_n(z)\}$ is a sequence of analytic functions on an open set U and that for any compact subset K of U, $\{f_n(z)\}$ is uniformly convergent to a function f(z) on K. Show that f(z) is an analytic function on U.

Problem 2. Let f(z) be an analytic function on an open disk $D_r(z_0) = \{z : |z - z_0| < r\}$. If $z = z_0$ is a zero of f(z) with a multiplicity of k > 0, show that there is a neighborhood V of w = 0 such that for each $\alpha \in V$, $f(z) - \alpha$ has a zero in $D_r(z_0)$ with the same multiplicity k.

Problem 3. f(z) is called a holomorphic function on an open set U if it is differentiable at every point in U, whereas f(z) is an analytic function on U if it has a power series expansion with a positive radius of convergence about each point in U. Show that the above two definitions are equivalent.

Problem 4. Suppose that f(z) = u + iv is an entire function and its real part u is a bounded function on \mathbb{C} . Show that f(z) is a constant, i.e. $f(z) \equiv c$ for some constant c and any $z \in \mathbb{C}$.

Problem 5. Use techniques of complex analysis to evaluate

$$\int_{0}^{\infty} \frac{dt}{(t^2+1)\cosh(\pi t)}.$$