General Examination: Graph Theory and Combinatorics

Choose any four of the following five questions.

Problem 1. Let G = (V, E) be a graph with node set V and edge set E.

- (a) Define the following:
 - the minimum degree δ of *G*;
 - the node connectivity κ of *G*;
 - the edge connectivity λ of *G*.
- (b) State the inequality relationship between these three parameters and prove your result.

Problem 2. Let G = (V, E) be a graph with node set V and edge set E.

- (a) Define: G is hamiltonian.
- (b) State and Prove Ore's Theorem regarding hamiltonicity of G.
- (c) State Chvátal's Theorem regarding forcible hamiltonicity of a degree sequence, being sure to define *forcible*.
- (d) Give an example of a degree sequence (realizable) that does not satisfy Chvátal's condition but for which there exists a realization that is hamiltonian. Give the realization, as well.

Problem 3. Derive a formula for $\sum_{k=1}^{n} k^3$, being sure to explain your approach.

Problem 4.

- (a) State and prove Menger's Theorem (regarding the connectivity parameter κ_{st}).
- (b) State Hall's Marriage Theorem and prove it using Menger's Theorem.
- (c) State the "transversal" version of Hall's Marriage Theorem, being sure to establish the connection.

Problem 5. Let G be a graph and \vec{G} an arbitrary orientation of G.

- (a) Define the node-arc incidence matrix S of \vec{G} .
- (b) Define the Laplacian H(G).
- (c) Prove $H(G) = SS^T$.
- (d) Prove H(G) is positive semi-definite but *NOT* positive definite