General Examination: Algebra and Linear Algebra

Problem 1. Let *G* be an abelian group, $K = \{g \in G \mid g^2 = 1\}$, and $H = \{g^2 \mid g \in G\}$ Prove that $G/K \simeq H$.

Problem 2. Let p,q be distinct primes and $n \in \mathbb{N}$ satisfying $q \nmid p^i - 1$ for every $1 \leq i \leq n-1$. Prove that every group *G* of order $p^n q$ is solvable.

Problem 3. Let *R* be a finite commutative ring with unity. Prove that every prime ideal in *R* is maximal.

Problem 4. Let *R* be a commutative ring with unity, *I*, *J* ideals in *R*.

- Show that $I \cap J$ is an ideal in *R*.
- Show that $I + J = \{a + b \mid a \in I, b \in J\}$ is an ideal in *R*.
- Show that if I + J = R, then $R/(I \cap J) \simeq R/I \times R/J$.