General Examination: Probability and Statistics

Problem 1. Let *X* be a random variable on $(\Omega, \mathcal{F}, \mathbf{P})$. Show that *X* is independent of itself if and only if *X* is **P**-a.s. a constant.

Problem 2. The joint probability density function of *X* and *Y* is given by

$$f(x,y) = \begin{cases} 9e^{-3x-3y} & x > 0, \ y > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Find $\mathbf{E}[X+Y]$.

Problem 3. Prove or give a counterexample that

 $X_n \to X$ in probability \Longrightarrow $\mathbf{E}[X_n] \to \mathbf{E}[X]$.

Problem 4. Let X_1, \ldots, X_n be independent identical Bernoulli(*p*) random variables.

(a) Find the maximum likelihood estimator (MLE) of the probability *p*.

(b) Find the maximum likelihood estimator (MLE) of $\pi = \frac{p}{1-p}$.

Problem 5. Let X_1, \ldots, X_n be independent identical Poisson(λ) random variables, and let \overline{X} and S^2 be the sample mean and variance, respectively. Define

$$W_a\left(\bar{X}, S^2\right) = a\bar{X} + (1-a)S^2$$

Give and verify a value of *a*, so that W_a is a best unbiased estimator of λ .