General Examination: Algebra

Problem 1. Let \mathbb{Q} be the additive group of rational numbers and \mathbb{Z} its subgroup of integers. Prove the following:

- (a) \mathbb{Q}/\mathbb{Z} contains an element of order *n* for every $n \in \mathbb{N}$.
- (b) \mathbb{Q}/\mathbb{Z} contains a unique subgroup of order *n* for every $n \in \mathbb{N}$.
- (c) Every finite subgroup of \mathbb{Q}/\mathbb{Z} is cyclic.

Problem 2. Prove the following:

- (a) $|Aut(\mathbb{Z}_7)| = 6.$
- (b) Show that a group of order 63 contains an element of order 21.

Problem 3. A local ring is a commutative ring with $1 \neq 0$ that has a unique maximal ideal. Show that a ring *R* is local if and only if the set of non-units in *R* is an ideal.

Problem 4. Consider $\mathbb{Z}[\frac{1}{2}] = \{\frac{a}{2^n} \mid a, n \in \mathbb{Z}, n \ge 0\}$ – the smallest subring of \mathbb{Q} containing \mathbb{Z} and $\frac{1}{2}$.

- (a) Let $\langle 2x 1 \rangle$ be the ideal in $\mathbb{Z}[x]$ generated by the polynomial 2x 1. Show that $\mathbb{Z}[x]/\langle 2x 1 \rangle \simeq \mathbb{Z}[\frac{1}{2}]$.
- (b) Prove that $\langle 2x 1 \rangle$ is not maximal in $\mathbb{Z}[x]$ by finding an ideal *I* in $\mathbb{Z}[x]$ such that

$$\langle 2x-1 \rangle \subsetneqq I \gneqq \mathbb{Z}[x].$$