General Examination: Real Variables

Problem 1. Let *f* be a real-valued function defined on \mathbb{R} . Show that the set of points at which *f* is continuous is a G_{δ} set, i.e., it can be represented as a countable intersection of open sets.

Problem 2. Let $E \subset l^1$ be a set of $x = (x_1, x_2, ...)$ such that

$$|x_n| \le \frac{\ln \ln(2+n)}{n(\ln(1+n))^3}, \qquad n = 1, 2, 3, \dots$$

Let *T* be a mapping from *E* into itself such that $||T(x) - T(y)||_{l^1} < ||x - y||_{l^1}$. Is it true that *T* must have a unique fixed point?

Problem 3. Let *E* be a bounded Lebesgue measurable set of real numbers. Suppose there is a bounded, countably infinite set of real numbers Λ for which the collection of translates of *E*, $\{\lambda + E\}_{\lambda \in \Lambda}$, is pairwise disjoint. Show that set *E* has zero measure.

Problem 4. Let f be Lebesgue integrable over finite interval [a,b]. Show that

$$\lim_{n \to \infty} \int_{a}^{b} f(x) \cos(nx) dx = 0.$$

Problem 5. Let *K* be a compact subset of a metric space *X*, and let *O* be an open set containing *K*. Show that there is an open set *U* such that $K \subset U \subset \overline{U} \subset O$, where \overline{U} is the closure of *U*.

Problem 6. Are there any missing conditions in the following statement? Let $\{f_n\}$ be a sequence of measurable functions that converges pointwise on a measurable set *E* to a real-valued function *f*. Then for each $\varepsilon > 0$ there is a closed set *F* contained in *E* for which $f_n \to f$ uniformly on *F* and $m(E \setminus F) < \varepsilon$.