General Examination: Complex Analysis

Problem 1. Suppose $f(z) = \sum_{n=0}^{\infty} a_n z^n$ has a radius of convergence R > 0. Show that

$$h(z) = \sum_{n=0}^{\infty} \frac{a_n z^n}{n!}$$

is entire and that for $r \in (0, R)$, there is a constant M such that $|h(z)| \leq Me^{|z|/r}$.

Problem 2. Let f(z) be an analytic function in \mathbb{C} , and let $f(z)/z \to 0$ as $|z| \to \infty$. Prove that f(z) is a constant.

Problem 3. Prove or disprove the following statements:

(a) If $f : \mathbb{C} \to \mathbb{C}$ is a nonconstant entire function, then $f(\mathbb{C})$ is dense in \mathbb{C} .

(b) If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 has a radius of convergence $R > 1$, then
 $\frac{1}{2} \int dz = \frac{1}{2} \frac{1}{2} \int dz = \frac{1}{2} \frac{1}{2}$

$$\frac{1}{2\pi} \int_{|z|=1} |f(z)|^2 \, |dz| = \sum_{n=0}^{\infty} |a_n|^2.$$

Problem 4. Evaluate the following integrals:

(a)
$$\int_{0}^{2\pi} e^{e^{i\theta}} d\theta.$$

(b) $\int_{|z|=1} \frac{|dz|}{|z-a|^2}$, where $a \in \mathbb{C}$ such that $|a| < 1$.

Problem 5. Use complex analysis techniques to evaluate

$$\int_0^\infty \frac{\ln x}{\sqrt{x} \, (x+1)^2} \, dx.$$