General Examination: Real Analysis

Problem 1. Show that if (X,d) is a separable metric space, then its cardinality cannot exceed continuum.

Problem 2. Let $\{f_n\} \subset C[a,b]$ be a sequence of continuous functions converging to f in C[a,b]. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of [a,b] such that $a_n \to a$, $b_n \to b$. Prove or disprove that

$$\lim_{n\to\infty}\int_{a_n}^{b_n}f_n(x)dx=\int_a^bf(x)ds.$$

Problem 3. Show that the Borel σ -algebra on \mathbb{R}^n coincides with the σ -algebra generated by the compact sets.

Problem 4. Let $\{E_n\}$ be a sequence of nonempty Lebesgue measurable subsets of [0,1] such that $\lim_{n\to\infty} \mu_L(E_n) = 1$. Show that $\forall \epsilon \in (0,1), \exists$ a subsequence $\{E_{k_n}\} \subset \{E_n\}$ such that $\mu_L(\bigcap_{n=1}^{\infty} E_{k_n}) > \epsilon$.

Problem 5. Let $f_n(t) = t^{3n} - 2t^{2n} + t^n$. Does the sequence $\{f_n\}$ converge uniformly on [0,1]? If no, is there a subset of measure 0.9 on which $\{f_n\}$ converges uniformly?

Problem 6. A series $\sum_{n=1}^{\infty} x_n$ is absolutely summable if $\sum_{n=1}^{\infty} ||x_n|| < \infty$. Show that a normed space *X* is a Banach space if and only if every absolutely summable series in *X* is convergent.

Problem 7. Prove or disprove the following statement. Let $\{f_n\}$ be a sequence of measurable functions on a set *E* of finite measure such that $|f_n| \le M$ on *E* for all $n \in \mathbb{N}$ and some M > 0. If $\{f_n\}$ converges to *f* pointwise, then $\lim_{n \to \infty} \int_E f_n = \int_E f$. If the statement is false, what should be modified to make it true?