General Examination: Real Variables

Problem 1. Give examples of

(a) A sequence of Lebesgue integrable functions $\{f_n\}$ such that $f_n \to 0$ a.e. on [0,1], but $\int_0^1 f_n \to \infty$.

(b) A sequence of functions $f_n(x)$ such that $f_n \to 0$ in measure on $x \in [0, 1]$, but $\lim_{n \to \infty} f_n(x)$ exists for no $x \in [0, 1]$ (i.e., f_n converges nowhere).

Problem 2. Is there a sequence of Lebesque measurable sets $\{E_n\} \subset \mathbb{R}$ such that $E_{n+1} \subset E_n$ for $n \ge 1$ with $\bigcap_{n=1}^{\infty} E_n = [0,1]$ but $m(E_n) = \infty$ for $n \ge 1$?

Problem 3. Prove that the space of converging to zero sequences $\{x_k\}_{k=1}^{\infty}$, $\lim_{k \to \infty} x_k = 0$, with norm $||x||_{\infty} = \sup_{1 \le k \le \infty} |x_k|$ is complete.

Problem 4. Let *M* be a compact metric space and suppose that $f : M \mapsto M$ satisfies $d(f(x), f(y)) < \alpha d(x, y)$ for any $x \neq y$. Find all numbers α for which the mapping *f* has a unique fixed point.

Problem 5. Let
$$f(x) = \sum_{k=1}^{\infty} \frac{1}{k} e^{-k(x-k)^2}$$
 for $x \in \mathbb{R}$. Is $f \in L_1(\mathbb{R})$?

Problem 6. Does $\frac{10}{13}$ belong to the Cantor discontinuum?

(The Cantor discontinuum is a set obtained from [0,1] by taking away the centered open one-thirds of all intervals, i.e. start from [0,1] and take away $(\frac{1}{3},\frac{2}{3})$, then take away $(\frac{1}{9},\frac{2}{9})$ and (7/9,8/9), and so on.)