General Examination: Complex Analysis

Problem 1.

- (a) Find the number of zeros for the polynomial $z^8 4z^5 + z^2 1 = 0$ inside the unit disk $|z| \le 1$.
- (b) Suppose that f is analytic and has a zero of order m at the point z_0 . Show that the function g(z) = f'(z)/f(z) has a simple pole at z_0 with $\text{Res}[g, z_0] = m$.

Problem 2. Prove or disprove the following assertions:

- (a) If f(z) = u + iv is continuous and the Cauchy-Riemann equations are satisfied for z = 0, then f'(0) exists.
- (b) If f(z) is differentiable at $z = z_0$, then it is analytic at z_0 .
- (c) If $\sum a_n z^n$ has radius of convergence *R*, then $\sum n^3 a_n z^n$ has radius of convergence *R*.
- (d) Let f(z) = u + iv be an entire function and $u^2(z) \ge v^2(z)$ for all $z \in \mathbb{C}$, then f must be a constant. Hint: consider $F(z) = e^{-f^2(z)}$.

Problem 3. Use complex analysis techniques to evaluate the integral

$$I = \int_0^\infty \frac{x^2}{\cosh x} dx.$$