General Examination: Real Variables

Problem 1. Suppose that $f : \mathbb{Q} \mapsto \mathbb{R}$. (\mathbb{Q} is the set of rational numbers.) (a) Let f be Lipshitz. Show that f extends to a continuous function $h : \mathbb{R} \mapsto \mathbb{R}$.

Is *h* unique? Note: *f* is Lipshitz if for all *x*, *y*, $\exists C > 0$, $|f(x) - f(y)| \le C \cdot |x - y|$.

(b) Let f be continuous. Is it possible to form such a unique continuous extension h?

Problem 2. Let *d* be a metric on a complete space *M*. Let mapping $f : M \mapsto M$ be such that for all $x, y \in M$, $\exists \alpha < 1, \beta < 1$, such that

$$\frac{d(f(x), f(y))}{1 + \beta d(f(x), f(y))} < \frac{\alpha d(x, y)}{1 + d(x, y)}.$$

Prove or disprove: Mapping f has a unique fixed point.

Problem 3. Let $\{f_n\}$ be a sequence of Lebesgues measurable functions and let $f: X \mapsto \mathbb{R}$. Assume that for every $\varepsilon > 0$ and the Lebesgue's measure μ ,

$$\lim_{n \to \infty} \mu(\{x \in X : |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$$

Show that there is a subsequence of $\{f_n\}$ that converges to f almost everywhere.

Problem 4. Let $f_n(t) = ne^{-n^2t} [\sqrt{1 + \ln(1 + nt)} - 1], t \in [0, 1]$. Does this sequence converge uniformly on [0, 1]? If no, find a subset of [0, 1] of measure 0.99 on which f_n converges uniformly.

Problem 5. Is it true that ||A|| = 2 for linear operator $A : C^1[0,1] \mapsto C[0,1]$,

$$Ax(t) = x(0) - x(1).$$

Problem 6. Which condition is missing in the following theorem: Let $\{f_n\}$ be a sequence in L_1 and suppose that $f_n \to f$ pointwise. Then $f \in L_1$ and $\int f_n \to \int f$ as $n \to \infty$ (the integrals are understood in the Lebesgue's sense).