General Examination: Real Variables

Problem 1.

- (a) Find a value of α and function f(x), $f : \mathbb{R} \mapsto \mathbb{R}$, such that $[f(x)]^{\alpha}$ is measurable but f(x) is not measurable.
- (b) Find all numbers α for which the measurability of $[f(x)]^{\alpha}$ implies the measurability of f(x).

Problem 2. Let $f_n(t) = n^2 e^{-nt} (e^t - \cos t - t), t \in [0, 1]$. For every $\delta \in (0, 1)$, find a set of Lebesgue measure $1 - \delta$ on which f_n converges uniformly when $n \to \infty$.

Problem 3. For which values α and β is the function $f(x) = x^{\alpha} \sin(x^{\beta})$, defined for $x \in (0, 1]$,

- (a) Lebesgue integrable?
- (b) improperly Riemann integrable?

Problem 4. Let \mathcal{P} be the set of all polynomials in C[a,b]. Determine whether \mathcal{P} is open, closed, or neither.

Problem 5. Let \mathcal{B} be a Banach space, and let $A : \mathcal{B} \mapsto \mathcal{B}$ and $f : \mathcal{B} \mapsto \mathbb{R}$ be linear operators. Using the Hahn-Banach theorem show that

$$\sup_{\|f\|\leq 1, \|x\|\leq 1} |f(Ax)| = \|A\|.$$

Problem 6. Determine whether the operator

$$A: C[-1,1] \mapsto C[-1,1], \quad Ax(t) = \frac{1}{2}[x(t) + x(-t)]$$

is compact.