General Examination: Complex Analysis

Problem 1. (a) Find the constant c such that the function

$$f(z) = \frac{1}{z^9 - z^8 + z^2 + 2z - 3} - \frac{c}{z - 1}$$

is holomorphic on an open set containing the closed disk $\{z : z \le 1\}$ and prove it.

Problem 2.

- (a) Let *G* be a region in \mathbb{C} and suppose $u: G \to \mathbb{R}$ is a harmonic function. Show that $\partial u/\partial x i\partial u/\partial y$ is an analytic function on *G*.
- (b) Suppose that u and v are real valued harmonic functions on a domain Ω such that u and v satisfy the Cauchy-Riemann equations on a subset S of Ω which has a limit point in Ω . Using the result from part (a), show that u + iv must be analytic on Ω .

Problem 3. Using techniques of complex analysis, evaluate the integrals

(a)

$$I = \int_{-\infty}^{\infty} \frac{\cos x}{\cosh x} dx.$$

(b)

$$I = \int_0^\infty \frac{x^{a-1}}{x+1} dx, \quad 0 < a < 1.$$