General Examination: Real Variables

Problem 1. The following statement is <u>not</u> true: Let *E* be a measurable subset of \mathbb{R} , and let μ be the Lebesgue measure on \mathbb{R} . If $f_n, n \ge 1$, are measurable functions on *E* and $f_n(x) \to f(x)$ a.e., then for each $\varepsilon > 0$, there exists a closed set $F \subseteq E$ such that $\mu(E \setminus F) < \varepsilon$ and $f_n(x) \to f(x)$ uniformly on *F*.

- (a) Add an assumption that makes this statement true. How is this theorem (correct statement) called?
- (b) Give an example showing that without this additional assumption the statement is not true.

Problem 2. For each n = 1, 2, ... and $k = n, n + 1, n + 2, ..., 2^n - 1$, let $f_{n,k}(x) = 1/x$ for $k2^{-n} \le x < (k+1)2^{-n}$ and $f_{n,k}(x) = 0$ otherwise. Consider the sequence $f_{1,1}, f_{2,2}, f_{2,3}, f_{3,3}, ..., f_{3,7}, f_{4,4}, ..., f_{4,15}, ...$ Show that

- (a) This sequence converges in measure to 0 on the interval (0,1), but does *not* converge at any point of (0,1).
- (b) There is no integrable g(x) on (0,1) such that $f_{n,k}(x) \le g(x)$ a.e. on (0,1) for each *n* and *k*.

Problem 3. Let *S* be any subset of a normed linear space *X*, and let *A* be a bounded subset of the dual space X^* . Show that *A* is equicontinuous on *S*.

Problem 4. For the sequence of functions $f_n(t) = \frac{n(e^{\cos \pi t} - 1)}{(t+1/2)^n}$, $t \in [0, 10]$, find

- (a) its pointwise limit as $n \to \infty$ if the limit exists.
- (b) find a subset of [0, 10] with the Lebesgue measure greater than 9.5 on which the uniform limit of $f_n(t)$ exists.

Doctoral Program	
Fall 2010	

Problem 5. Let M_n be a sequence of compact sets in a Banach space X such that any intersection of a finite number of these sets is not empty. Is it possible $\bigcap_{n=1}^{\infty} M_n = \emptyset$? Explain your answer.

Problem 6. Let $(x, y) \in [0, 1] \times [0, 1]$ and

$$f(x,y) = \sum_{n=1}^{\infty} \frac{\sin^2(\pi n^2(x^2 - y))}{n^2(1 + x + y)}.$$

Prove that f(x, y) is a Lebesgue integrable function.