General Examination: Complex Analysis

Problem 1. State and prove Schwarz's lemma.

Problem 2. Prove or disprove the following assertions (give a relevant theorem or a counterexample):

- (a) If f(z) = u + iv is a continuous complex-valued function, and the Cauchy-Riemann equations hold at z_0 , then f(z) is analytic at z_0 .
- (b) Let *D* be an open connected set in \mathbb{C} . If $f: D \to \mathbb{C}$ is analytic and $z_0 \in D$ is such that $|f(z_0)| \le |f(z)|$ for all $z \in D$, then $f(z_0) = 0$ or *f* is a constant.
- (c) If f(z) is analytic in a bounded domain *D* and has infinitely many zeros in *D*, then $f \equiv 0$ in *D*.
- (d) If f(z) is entire and $|f(z)| \ge 1$ for all z, then f is a constant.

Problem 3.

(a) Let f(z) be analytic in $D = \{z \in \mathbb{C} : |z| < 2\}$. Evaluate the integral

$$\frac{2}{\pi} \int_0^{2\pi} f\left(e^{it}\right) \cos^2\frac{t}{2} dt.$$

(b) Using complex analysis techniques, evaluate the integral

$$I = \int_0^\infty \frac{\ln x}{\sqrt{x} \, (x+1)^2} \, dx.$$