General Examination: Part I

Problem 1. Show that every finite group is isomorphic to a subgroup of an alternating group.

Problem 2. Let *R* be a commutative ring such that the polynomial ring R[x] is a principal ideal domain. Prove that *R* is a field.

Problem 3. Let (X, \mathfrak{I}) be a topological space and let \mathfrak{B} be the σ -algebra of Borel sets defined on the space.

- (a) If $\mathscr{C} = \{ U^c | U \in \mathfrak{I} \}$ is the family of all closed sets in *X*, show $\mathfrak{M}(\mathscr{C}) = \mathfrak{B}$, where $\mathfrak{M}(\mathscr{C})$ is the σ -algebra generated by \mathscr{C} .
- (b) Give an example of a Borel measurable function which is not continuous. Explain your answer.

Problem 4. Let (X, \mathfrak{M}) be a measure space with function $f : (X, \mathfrak{M}) \to [-\infty, \infty]$.

- (a) Prove: f is measurable $\implies |f|$ is measurable.
- (b) Is the converse of (a) valid? If yes, prove it, if not give a counterexample.

Problem 5. Let *C* denote the positively oriented circle of radius 1 centered at the origin. Evaluate

 $\int_C e^{e^{1/z}} dz.$

Problem 6. Determine all entire functions f that satisfy |f'(z)| < |f(z)|.