General Examination: Part II

Problem 1. Let G be a cyclic group, and let $a, b \in G$ be elements which are not squares. Prove that ab is a square.

Give an example to show that this result is false if the group is not cyclic.

Doctoral Program	Department of Mathematical Sciences
Spring 2008	Stevens Institute of Technology

Problem 2. Let a sequence $\{f_n\}$ of Lebesgue-integrable functions on $X \subset \mathbb{R}$ be monotonically increasing. Let $f(x) = \lim_{n\to\infty} f_n(x)$ and integrals $\int_X f_n(x) dx$ be uniformly bounded. Prove that f is finite almost everywhere.

Problem 3.

(a) Prove that the norm $||x||_{\infty} = \sup_{1 \le k \le \infty} |x_k|$ in the space l_{∞} of infinite number sequences $\{x_k\}_{k=1}^{\infty}$ is the limit of norms $||x||_p = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$ of spaces l_p as $p \to \infty$.

(b) Prove that the space l_{∞} is complete.

Doctoral Program	
Spring 2008	

Problem 4. Let G be an open connected set in \mathbb{C} , and suppose that $f : G \to \mathbb{C}$ is analytic and $a \in G$ is such that $|f(a)| \leq f(z)$ for all z in G. Show that either f(a) = 0 or f(z) is constant.