Doctoral Program Department of Mathematical Sciences
Spring 2008 Stevens Institute of Technology

General Examination: Part II

Problem 1. Let G be a cyclic group, and let a,b € G be elements which
are not squares. Prove that ab is a square.

Give an example to show that this result is false if the group is not cyclic.
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Problem 2. Let a sequence {f,} of Lebesgue-integrable functions on X C
R be monotonically increasing. Let f(z) = lim, . fu(x) and integrals
S « Jn(z)dx be uniformly bounded. Prove that f is finite almost everywhere.
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Problem 3.

(a) Prove that the norm ||z| = sup |zx|in the space [, of infinite number
1<k<oo

s 1/p
sequences {xy}72, is the limit of norms ||z||, = (Z |xk|p> of spaces [, as
k=1

p — 00.

(b) Prove that the space [, is complete.
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Problem 4. Let G be an open connected set in C, and suppose that f :
G — C is analytic and a € G is such that |f(a)| < f(z) for all z in G. Show
that either f(a) =0 or f(z) is constant.



