General Examination: Part I

Problem 1. Suppose that A and B are linear transformations from a finitedimensional complex vector space V to itself. Prove or disprove the following two statements.

- (a) Every eigenvector of AB is also an eigenvector of BA.
- (b) Every eigenvalue of AB is also an eigenvalue of BA.

Problem 2. Prove that the ring of polynomials in one variable with real coefficients is a principal ideal domain.

Problem 3. Let $f_n(x) = \sum_{k=1}^n \frac{1}{k} e^{-k(x-k)^2}$ for $x \in \mathbb{R}$. Prove or disprove the following statements.

- (a) $f_{\infty} \in L_1$.
- (b) $\int f_n \to \int f_\infty$ as $n \to \infty$.
- (c) f is continuous.

Doctoral	l Program
Spring 20	08

Problem 4. Let m^* be the Lebesgue outer measure on the real line \mathbb{R} . Let E_n be a countable number of sets on \mathbb{R} , each of which has zero outer measure. Prove that $m^*\left(\bigcup_{n=1}^{\infty} E_n\right) = 0.$ **Problem 5.** For a > 0, evaluate

$$\int_{0}^{\infty} \frac{\ln z}{z^2 + a^2} \, dz$$

Problem 6.

- (a) Define a curve being rectifiable on [a, b].
- (b) Prove that a curve in the complex plane is rectifiable iff its real and imaginary parts are of bounded variation.
- (c) Give an example of a continuous nonrectifiable curve on [0, 1].