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General Examination: Part I

Problem 1. Let V be a vector space of dimension n over C, the field of
complex numbers. Is V a vector space over R? If so, what is the dimension
of that vector space?
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Problem 2.

(a) Define direct product of groups. Show that the direct product of two
abelian groups is abelian.

(b) A group G has exponent t, if t is the smallest positive integer such that
gt = 1 for all g ∈ G. Show that, if G has exponent 2, then G is abelian.
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Problem 3. Let A,B ⊆ Rn and let the family C = {A,B}.

(a) Suppose that A ∩ B = ∅. Find the σ-algebra σ(C ) generated by the
family of sets C .

(b) Find σ(C ) in the case A ∩B 6= ∅.
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Problem 4. Suppose that E,E , µ is a measure space and let fn, gn be two
sequences of measurable functions such that fn

m−→ f and gn
m−→ g on E

where
m−→ denote convergence in measure.

(a) Show that fn + gn
m−→ f + g on E.

(b) If µ(E) < +∞ show that fngn
m−→ fg on E.

(c) If µ(E) < +∞, gn → g on E and g 6= 0 a.e., then fn/gn
m−→ f/g on E.
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Problem 5. Let Cr denote the positively oriented circle of radius r centered
at the origin. For all positive values r 6= 2, evaluate∫

Cr

z2 + ez

z2(z − 2)
dz.
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Problem 6. Let f be an entire function that has the property |f(z)| ≥ 1
for all z. Show that f is a constant.
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